• 제목/요약/키워드: COMS MI

검색결과 70건 처리시간 0.025초

Introduction of COMS Meteorological Imager

  • Cho Young-Min;Myung Hwan-Chun;Kang Song-Doug;Youn Heong-Sik
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.112-115
    • /
    • 2005
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service is planned to be launched onto Geostationary Earth Orbit in 2008. The meteorological payload of COMS is an imager which will monitor meteorological phenomenon around the Korean peninsular intensively and of Asian-side full Earth disk periodically. The meteorological imager (MI) of COMS has 5 spectral channels, I visible channel with the resolution of I km at nadir and 4 infrared channels with the resolution of 4 km at nadir. The characteristics of the COMS MI are introduced in the view points of user requirements, hardware characteristics, and operation features.

  • PDF

DESIGN OF MI DECOMPOSITION MODULE FOR THE COMS IMPS

  • Seo, Seok-Bae;Kang, Chi-Ho;Koo, In-Hoi;Ahn, Sang-Il;Kim, Eun-Kyou
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.267-270
    • /
    • 2006
  • COMS has two imaging payloads, MI (Meteorological Imager) and GOCI (Geostationary Ocean Colour Imager). In GOCI case, data are packaged per each slot - one part of 16 two-dimensional arrays for imaging sensors - so its generation algorithm is simple. But MI case, data are made up with sequences of 480 bit blocks and are transmitted to its ground station sequentially. Moreover there is no time information in each 480 bit MI block, so a system in its ground system should be attaching time information at received MI blocks. DM (Decomposition Module) is one module of IMPS that receives Raw Data from DATS and generates Level 0 Products that include time tagging. This paper explains DM design for MI of COMS payloads.

  • PDF

COMS METEOROLOGICAL IMAGER SPACE LOOK SIDE SELECTION ALGORITHM

  • Park, Bong-Kyu;Lee, Sang-Cherl;Yang, Koon-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.100-103
    • /
    • 2008
  • COMS(Communication, Ocean and Meteorological Satellite) has multiple payloads; Meteorological Image(MI), Ocean Color Imager(GOCI) and Ka-band communication payloads. MI has 4 IR and 1 visible channel. In order to improve the quality of IR image, two calibration sources are used; black body image and cold space look data. In case of COMS, the space look is performed at 10.4 degree away from the nadir in east/west direction. During space look, SUN or moon intrusions are strictly forbidden, because it would degrade the quality of collected IR channel calibration data. Therefore we shall pay attention to select space look side depending on SUN and moon location. This paper proposes and discusses a simple and complete space look side selection logic based on SUN and moon intrusion event file. Computer simulation has been performed to analyze the performance of the proposed algorithm in term of east/west angular distance between space look position and hazardous intrusion sources; SUN and moon.

  • PDF

통신해양기상위성의 기상 탑재체 접속장치 설계 (COMS(Communication, Ocean color & Meteorological Satellite) Meteorological Imager Interface Unit(MI2U) Design)

  • 채태병
    • 한국위성정보통신학회논문지
    • /
    • 제1권2호
    • /
    • pp.38-44
    • /
    • 2006
  • 통신해양기상위성은 기상 및 해양관측과 Ka-대역의 위성통신 서비스 제공을 주요 임무로 하는 정지궤도 위성이다 이러한 임무 요구사항을 수행하기 위하여, 각 탑재 장치에서 요구하는 전기 및 기계 접속 요구사항을 수용할 수 있는 인터페이스 기능의 필요성이 대두되었다. 본 논문에서는 통신해양기상위성의 기상 탑재체 접속장치의 설계에 관하여 기술하고자 한다. 기상 탑재체 접속장치는 MIL-STD-1533 데이터 버스를 통하여 인공위성 본체를 제어하는 탑재컴퓨터와 기상 탑재체 사이의 인터페이스 기능을 담당한다. 또한 전력조절기의 50V 출력을 기상 탑재체 요구 수준인 42V로 변환하는 전력 변환 기능화 탑재체에서 요구하는 인터페이스 및 통신 프로토콜을 수용하고 있다.

  • PDF

COMS Normal Operation for Earth Observation Mission

  • Cho, Young-Min
    • 대한원격탐사학회지
    • /
    • 제29권3호
    • /
    • pp.337-349
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service on $128.2^{\circ}$ East of the geostationary orbit since April 2011. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first one-year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

LRIT DESIGN OF COMS

  • KOO In-Hoi;PARK Durk-Jong;SEO Seok-Bae;AHN Sang-Il;KIM Eun-Kyou
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.305-308
    • /
    • 2005
  • The COMS, Korea's first geostationary multipurpose satellite program will accommodate 3 kind of payloads; Ka-Band communication transponder, GOCI (Geostationary Ocean Color Imager), and MI (Meteorological Imager). MI raw data will be transferred to ground station via L-band link. The ground station will perform image data processing for raw data, generate them into the LRIT/HRIT format, the user dissemination data recommended by the CGMS. The LRIT/HRIT are disseminated via satellite to user stations. This paper shows the COMS LRIT data generation procedure based on COMS LRIT specification and its verification results using the LRIT user station.

  • PDF

GOES-9 IMAGER DATA ANLYSIS FOR THE PREPRATION OF THE COMS MI OPERATION

  • LIM Hyun-Su;PARK Durk-Jong;KOO In-Hoi;KANG Chi-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.462-465
    • /
    • 2005
  • The ITT Industry's Commercial Advanced Geo-Imager (CAGI) which is a recurrent version of imagers used in the GOES series was selected as the COMS Meteorological Imager (MI). The ITT Imager can conduct some special observation such as the space look, blackbody observation, and star sensing regularly or irregularly for its radiometric quality control. Because the GOES-9 which uses an ITT Imager has become operational over the Western Pacific and Eastern Asia positioned at 155 degrees East, the reception of the GOES-9 data is available in Korea. As a step of preparing the COMS MI operation, we conduct the analysis of the GOES-9 imager raw data and operation procedures and compare them with contents of the ITT Imager's manual.

  • PDF

Scheduling North-South Mirror Motion between Two Consecutive Meteorological Images of COMS

  • 이수전;정원찬;김재훈
    • 한국위성정보통신학회논문지
    • /
    • 제3권2호
    • /
    • pp.26-31
    • /
    • 2008
  • As a multi-mission GEO satellite, Communication, Ocean, and Meteorological Satellite (COMS) is scheduled to be launched in the year 2009. COMS has three different payloads: Ka-band communication payload, Geostationary Ocean Color Imager (GOCI) and Meteorological Imager (MI). Among the three payloads, MI and GOCI have several conflict relationships; one of them is that if MI mirror moves vertically larger than 4 Line Of Sight (LOS) angle while GOCI is imaging, image quality of GOCI becomes degraded. In this paper, MI scheduling algorithm to prevent GOCI's image quality degradation will be presented.

  • PDF

천리안위성 기상탑재체의 스캔미러 방사율 보정 (Scan Mirror Emissivity Compensation for the COMS MI)

  • 서석배;진경욱;안상일
    • 항공우주기술
    • /
    • 제10권1호
    • /
    • pp.156-166
    • /
    • 2011
  • 천리안위성은 대한민국 최초의 정지궤도 지구관측위성으로써 기상탑재체와 해양탑재체를 이용하여 24시간 지구관측 임무를 수행한다. 위성은 궤도상 시험을 성공적으로 완료하고 2011년 4월부터 정상운영 중이다. 본 논문에서는 천리안위성 기상탑재체의 스캔미러 방사율 보정 알고리즘 및 이의 소프트웨어 구현에 대해서 설명한다.

MI2U Control Flight Software in COMS

  • Kang, Soo-Yeon;Yang, Koon-Ho
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2006년도 한국우주과학회보 제15권2호
    • /
    • pp.154-154
    • /
    • 2006
  • PDF