• Title/Summary/Keyword: COILING

Search Result 162, Processing Time 0.024 seconds

Influence of Different Slope Analysis during Pitching Wedge Swing on Plantar Pressure Distribution Pattern (경사면에서 골프스윙 동작시 족저압력 분석)

  • Son, Dong-Ju;Yang, Jeong-Ok;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.297-309
    • /
    • 2009
  • The study analyzed the mechanism of plantar foot pressure distribution during pitching wedge swinging on a flat, an up hill lie and a down hill lie to provide the fundamental information regarding biomechanical motion data by using plantar foot pressure measuring instrument. In the results, time factor spanning according to slope differences, plantar foot pressure factor and swing motion on the slope could have negative effect on the coiling of lower limbs during back swing, as well as the blocking of the lower limbs to minimize the dispersion of the weight and the release of the lower limbs after the impact during the down swing process. Moreover, since slope is one of many external factors affecting swing motion, address motion on an up hill lie limits the lower limbs movement, therefore, a relatively narrow stance is better on a down hill lie. It is estimated that a relatively wide stance would be better in order to limit the bigger activation of the lower limbs. Not only for the address motion but also during the down swing on an up hill lie it is concluded that the weight should be on the left foot in order to keep the body balance.

Mechanical Property Variations of the Strip in the Skin Pass Process after Hot Rolling (열연 강판의 정정공정에 따른 재질변화 예측기술)

  • Lee, J.H.;Kim, H.J.;Kim, J.M.;Lee, J.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.211-214
    • /
    • 2008
  • The Mechanical properties of steel in hot strip mill were associated with the various rolling conditions such as alloy composition, plastic deformation, cooling history and so on. After coiling process of strip which is the end of hot rolling process, the coil can be the final product or can be applied by another process, that is, cold rolling or skin pass rolling with the additional changes of mechanical properties. Skin pass rolling process with the small reduction affects the mechanical properties of the strip. Because many kinds of hot strips are delivered to the customers after the skin pass process, it is important for us to know the skin pass effects for the mechanical properties of the hot rolling strip. In this study, the variations of mechanical properties of the strip after the skin pass rolling will be discussed. Then, the mathematical model will be proposed for the prediction of mechanical properties of the final products with the comparison between measured and calculated values.

  • PDF

Pinched Flow Fractionation Microchannel to Sort Microring-Containing Immiscible Emulsion Droplets (마이크로 링이 함유된 비혼합성 에멀젼 액적의 분류를 위한 Pinched Flow Fractionation 마이크로 채널)

  • Ye, Woojun;Kim, Hyunggun;Byun, Doyoung
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.41-47
    • /
    • 2017
  • Microring/nanoring structure has high applicability for nano-antenna and biosensor thanks to its superior optical characteristics. Although coiling nanowires manufactured using immiscible emulsion droplets have an advantage in mass production, this process also forms nanowire bundles. In this study, we solved the nanowire bundle problem by size-selective sorting of the emulsion droplets in a pinched flow fractionation microchannel. Utilizing silver nanowires and immiscible emsulsion droplets, we investigated the correlation between the size of ring droplets and bundle droplet. We visualized the sorting process for glass particles and microring-containing emulsion droplets. Droplets were sorted based on their size, and the ratio of bundle droplets in solution decreased. This droplet-sorting strategy has potential to help the printing and coating process for manufacturing of ring structure patterns and developing of functional materials.

A Numerical Study on the Conjugate Heat Transfer inside a High Speed Motor for a Small Radial Compressor (초소형 압축기용 초고속 전동기 내부의 복합 열전달 해석)

  • Kim, T. G.;Hur, N.;Jeong, S.;Jeon, S. B.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.1 s.10
    • /
    • pp.14-21
    • /
    • 2001
  • In a small centrifugal compressor system, a high-speed motor needs to be developed to drive impellers directly. Heat is generated by both electrical heating due to copper coil resistance and aerodynamic heating in the gap between the rotor and stator in a high-speed motor. Removal of the heat is essential to the design of such motors since most magnetic materials are brittle and can be easily fractured by the heat. In the present study the cooling flow fields and temperature distributions are analyzed by using computational fluid dynamics simulation for a high-speed motor which has air cooling system as well as water cooling system. In the analysis, a conjugate heat transfer problem is solved by considering both convective heat transfer in the cooling system and conduction heat transfer in solid parts. Based on design drawings of a motor, air cooling system and water cooling system are analyzed to obtain temperature field and thus to check the coiling system performance. Also the cooling performance are studied for various flow rates of cooling air and water at the inlets.

  • PDF

A Study on the Improvement of Prediction Accuracy for Rolling Force in Continuous Cold Rolling Mill (연속냉각압연에서의 압연하중 예측정도 향상에 대한 연구)

  • Song, Gil-Ho;Park, Hae-Doo;Kim, Shin-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2257-2265
    • /
    • 1996
  • In the cold rolling mill, it is very important that a constrained static flow stress of rolled strip and rolling force calculation model be exactly considered to improve an prediction accuracy for rolling forces. Therefore, in this study, the values of the constrained static flow stress are used by deriving the regression equation which is a function of rolling conditions(FDT, CT) and chemical compositions(C, Si, Mn), previously applied by making the tables of yield strength for hot coils with size. And with the consideration that an elastic deformation part of an rolled strip appears at the entry and delivery side of the contacting area between the work roll and rolled strip is calculated. By applying these methods, the more accurate prediction for rolling force is obtained. As a results, the deviation of thickness is significantly reduced in the rolling direction.

Bio-inspired leaf stent for direct treatment of cerebral aneurysms: design and finite element analysis

  • Zhou, Xiang;You, Zhong;Byrne, James M.D.
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2011
  • Cerebral aneurysm is common lesion among adult population. Current methods for treating the disease have several limitations. Inspired by fern leaves, we have developed a new stent, called leaf stent, which can provide a tailored coverage at the neck of an aneurysm and thus prevent the blood from entering the aneurysm. It alone can be used to treat the cerebral aneurysm and therefore overcomes problems existing in current treating methods. The paper focuses on the numerical simulation of the leaf stents. The mechanical behaviour of the stent in various designs has been investigated using the finite element method. It has been found that certain designs provide adequate radial force and have excellent longitudinal flexibility. The performance of certain leaf stents is comparable and even superior to those of the commercially available cerebral stents such as the Neuroform stent and the Enterprise stent, commonly used for stent assisted coiling, while at the same time, providing sufficient coverage to isolate the aneurysm without using coils.

The Impact of Abrupt Climate Change on the Marine Ecosystem in the East Sea

  • Shin, Im-Chul;Yi, Hi-Il;Chung, Hyo-Sang;Kwon, Won-Tae;Chun, Jong-Hwa;Oh, Hyun-Taek
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2003
  • Environmental changes caused by the abrupt climatic change are one of the important issues in the scientific community. In the East Sea, abrupt climatic shift, called Younger Dryas, is identified. The age of the Younger Dryas cold episode occurred at 11.2 ka. Overall, changes in circulation and bottom water conditions occurred during the Younger Dryas cold episode in the study area. Especially, climatic transition from meltwater spike to the Younger Dryas cold episode is characterized by significant shifts of oxygen isotope values, the coiling ratios of Neogloboquadrina pachyderma, and the planktonic foraminifers abundances. The impact of abrupt climate change on the ecosystem is very significant. In the East Sea, the calcium carbonate secreting organism(foraminifers) is replaced by silicon dioxide secreting organisms(diatom, radiolarian) after the abrupt and severe cold climatic event. Based on the Doctrine of Uniformitarianism, at least climate change for the next 100 years would be severely influence on the marine ecosystem.

  • PDF

Combined Endovascular and Microsurgical Procedures as Complementary Approaches in the Treatment of a Single Intracranial Aneurysm

  • Lim, Yong-Cheol;Shin, Yong-Sam;Chung, Joon-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.1
    • /
    • pp.21-25
    • /
    • 2008
  • Objective : Both endovascular coil embolization and microsurgical clipping are now firmly established as treatment options for the management of cerebral aneurysms. Moreover, they are sometimes used as complementary approaches each other. This study retrospectively analyzed our experience with endovascular and microsurgical procedures as complementary approaches in treating a single aneurysm. Methods : Nineteen patients with intracranial aneurysm were managed with both endovascular and microsurgical treatments. All of the aneurysms were located in the anterior circulation. Eighteen patients presented with SAH, and 14 aneurysms had diameters of less than 10 mm, and five had diameters of 10-25 mm. Results : Thirteen of the 19 patients were initially treated with endovascular coil embolization, followed by microsurgical management. Of the 13 patients, 9 patients had intraprocedural complications during coil embolization (intraprocedural rupture, coil protrusion, coil migration), rebleeding with regrowth of aneurysm in two patients, residual sac in one patient, and coil compaction in one patient. Six patients who had undergone microsurgical clipping were followed by coil embolization because of a residual aneurysm sac in four patients, and regrowth in two patients. Conclusion : In intracranial aneurysms involving procedural endovascular complications or incomplete coil embolization and failed microsurgical clipping, because of anatomical and/or technical difficulties, the combined and complementary therapy with endovascular coiling and microsurgical clipping are valuable in providing the best outcome.

Investigation of Vortex Interactions over a Delta Wing with the Leading Edge Extension (연장된 앞전을 갖는 델타형 날개에서의 와류 상호작용에 관한 연구)

  • 이기영;손명환;장영일
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.215-224
    • /
    • 2001
  • An experimental investigation was conducted on the interaction of vortices over a delta wing with the leading edge extension for three angles of attack($16^{\circ},\; 24^{\circ} \;and\; 28^{\circ}$) at Reynolds number of $1.76{\times}10^6.$ The experimental data included total pressure contours and velocity vectors using 5-hole probe measurements. Constant total pressure coefficient contours show the LEX vortex moves downward and outboard, while the wing vortex exhibited an inboard and upward migration. At near the trailing edge, these vortices reveal a direct interaction between the wing and LEX vortex, featuring a coiling of vortex cores about each other. The combined effect of the interaction of these two vortices and proximity to the wing surface results in the increase of the suction peak. This is in contrast to the result obtained on the delta wing alone configuration, where the effect of the vortex breakdown was manifested. The interaction of the wing and LEX vortices is more pronounced at higher AOA.

  • PDF

Effects of Controlled Cooling on Microstructures and Mechanical Properties of a Steel for Cold Forming (냉간성형용 강의 미세조직과 기계적성질에 미치는 제어냉각의 영향)

  • Kim N. G.;Park S. D.;Kim B. O.;Choi H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.391-394
    • /
    • 2004
  • The main purpose of the present study has been placed on investigating the effects of controlled cooling on the microstructures and mechanical properties of 0.2C-0.2Si-0.8Mn-B steel for cold forming. The steel was processed in steel making factory(EAF, VD) and casted to $\Box160$ billet then reheated in walking beam furnace and rolled to coil, rolling stock was acceleratly cooled before coiling. Microstructual observation, tensile test and charpy impact tests were conducted. The mechanical properties and microsture of the steel were changed by cooling condition. The grain size of rolled product decreased with increasing cooling rate, resulting in increase of impact toughness and tensile strength, elongation and reduction of area . From the result of this study, it is conformed that mechanical properties and microstructure of 0.2C-0.2Si-0.8Mn-B steel for cold forming were enhanced by accelerated cooling.

  • PDF