• Title/Summary/Keyword: CODE V

Search Result 735, Processing Time 0.031 seconds

A Dual-Channel 6b 1GS/s 0.18um CMOS ADC for Ultra Wide-Band Communication Systems (초광대역 통신시스템 응용을 위한 이중채널 6b 1GS/s 0.18um CMOS ADC)

  • Cho, Young-Jae;Yoo, Si-Wook;Kim, Young-Lok;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.47-54
    • /
    • 2006
  • This work proposes a dual-channel 6b 1GS/s ADC for ultra wide-band communication system applications. The proposed ADC based on a 6b interpolated flash architecture employs wide-band open-loop track-and-hold amplifiers, comparators with a wide-range differential difference pre-amplifier, latches with reduced kickback noise, on-chip CMOS references, and digital bubble-code correction circuits to optimize power, chip area, and accuracy at 1GS/s. The ADC implemented in a 0.18um 1P6M CMOS technology shows a signal-to-noise-and-distortion ratio of 30dB and a spurious-free dynamic range of 39dB at 1GS/s. The measured differential and integral non-linearities of the prototype ADC are within 1.0LSB and 1.3LSB, respectively. The dual-channel ADC has an active area of $4.0mm^2$ and consumes 594mW at 1GS/s and 1.8V.

Determination of Dose Correction Factor for Energy and Directional Dependence of the MOSFET Dosimeter in an Anthropomorphic Phantom (인형 모의피폭체내 MOSFET 선량계의 에너지 및 방향 의존도를 고려하기 위한 선량보정인자 결정)

  • Cho, Sung-Koo;Choi, Sang-Hyoun;Na, Seong-Ho;Kim, Chan-Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.2
    • /
    • pp.97-104
    • /
    • 2006
  • In recent years, the MOSFET dosimeter has been widely used in various medical applications such as dose verification in radiation therapeutic and diagnostic applications. The MOSFET dosimeter is, however, mainly made of silicon and shows some energy dependence for low energy Photons. Therefore, the MOSFET dosimeter tends to overestimate the dose for low energy scattered photons in a phantom. This study determines the correction factors to compensate these dependences of the MOSFET dosimeter in ATOM phantom. For this, we first constructed a computational model of the ATOM phantom based on the 3D CT image data of the phantom. The voxel phantom was then implemented in a Monte Carlo simulation code and used to calculate the energy spectrum of the photon field at each of the MOSFET dosimeter locations in the phantom. Finally, the correction factors were calculated based on the energy spectrum of the photon field at the dosimeter locations and the pre-determined energy and directional dependence of the MOSFET dosimeter. Our result for $^{60}Co$ and $^{137}Cs$ photon fields shows that the correction factors are distributed within the range of 0.89 and 0.97 considering all the MOSFET dosimeter locations in the phantom.

Application of an imaging plate to relative dosimetry of clinical x-ray beams (Imaging Plate를 이용한 의료용 광자선의 선량측정)

  • 임상욱;여인환;김대용;안용찬;허승재;윤병수
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.117-122
    • /
    • 2000
  • The IP(imaging plate) has been widely used to measure the two-dimensional distribution of incident radiation since it has a high sensitivity, reusability, a wide dynamic range, a high position resolution. Particularly, the easiness of acquiring digitized image using IP poses a strong merit because recent trend of data handling prefers image digitization. In order to test its usefulness in photon beam dosimetry, we measured the off-axis ratio(OAR) on portal planes and percent depth dose(PDD) within a phantom using IP, and compared the results with the data based on EGS4 Monte Carlo particle transport code, ion-chambers, conventional films. For the measurement, we used 6 MV X-rays, various field sizes. As a result, IP showed significant deviation from ion-chamber measurement: a significant overresponse, 100% greater than that of ion-chamber measurement at deep part of the phantom. Filtration of low-energy scattered photons at deep part of the phantom using 0.5 mm thick lead sheets did improve the result, only to the unacceptable extent. However, portal dose measurement showed possibilities of If as a dosimeter by showing errors less than 5%, as compared with film measurement.

  • PDF

A Study on PIXE Spectrum Analysis for the Determination of Elemental Contents (원소별 함량결정을 위한 PIXE 스펙트럼 분석에 관한 연구)

  • Jong-Seok OH;;Hae-ILL Bak
    • Nuclear Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.101-107
    • /
    • 1990
  • The PIXE (Proton Induced X-ray Emission) method is applied to the quantitative analysis of trace elements in tap water, red wine, urine and old black powder samples. Sample irradiations are performed with a 1.202 MeV proton beam from the SNU 1.5-MV Tandem Van de Graaff accelerator, and measurements of X-ray spectra are made by the Si(Li) spectrometer To increase the sensitivity of analysis tap water is preconcentrated by evaporation method. As an internal standard, Ni powder is mixed with black powder sample and yttrium solution is added to the other samples. The analyses of the PIXE spectra are carried out by using the AXIL (Analytical X-ray Analysis by Iterative Least-squares) computer code, in which the routine for least-squares method is based on the Marquardt algorithm. The elements such as Mg, Al, Si, Ti, Fe and Zn are analyzed at sub-ppm levels in the tap water sample. In the red wine sample prepared without preconcentration. the element Ti is detected in the amount of 3ppm. In conclusion, the PIXE method is proved to be appropriate for the analysis of liquid samples by relative measurements using the internal standard. and is expected to be improved by the use of evaluated X-ray production cross-sections and the development of sample preparation techniques.

  • PDF

Comparison Of CATHARE2 And RELAP5/MOD3 Predictions On The BETHSY 6.2% TC Small-Break Loss-Of-Coolant Experiment (CATHARE2와 RELAP5/MOD3를 이용한 BETHSY 6.2 TC 소형 냉각재상실사고 실험결과의 해석)

  • Chung, Young-Jong;Jeong, Jae-Jun;Chang, Won-Pyo;Kim, Dong-Su
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.126-139
    • /
    • 1994
  • Best-estimate thermal-hydraulic codes, CATHARE2 V1.2 and RELAP5/MOD3, hate been assessed against the BETHSY 6.2 tc six-inch cold leg break loss-of-coolant accident (LOCA) test. Main objective is to analyze the overall capabilities of the two codes on physical phenomena of concern during the small break LOCA i.e. two-phase critical flow, depressurization, core water level de-pression, loop seal clearing, liquid holdup, etc. The calculation results show that the too codes predict well both in the occurrences and trends of major two-phase flow phenomena observed. Especially, the CATHARE2 calculations show better agreements with the experimental data. However, the two codes, in common, show some deviations in the predictions of loop seal clearing, collapsed core water level after the loop seal clearing, and accumulator injection behaviors. The discrepancies found from the comprision with the experimental data are larger in the RELAP5 results than in the CATHARE2. To analyze the deviations of the two code predictions in detail, several sensitivity calculations have been performed. In addition to the change of two-phase discharge coefficients for the break junction, fine nodalization and some corrections of the interphase drag term are made. For CATHARE2, the change of interphase drag force improves the mass distribution in the primary side. And the prediction of SG pressure is improved by the modification of boundary conditions. For RELAP5, any single input change doesn't improve the whole result and it is found that the interphase drag model has still large uncertainties.

  • PDF

Low-Complexity Deeply Embedded CPU and SoC Implementation (낮은 복잡도의 Deeply Embedded 중앙처리장치 및 시스템온칩 구현)

  • Park, Chester Sungchung;Park, Sungkyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.699-707
    • /
    • 2016
  • This paper proposes a low-complexity central processing unit (CPU) that is suitable for deeply embedded systems, including Internet of things (IoT) applications. The core features a 16-bit instruction set architecture (ISA) that leads to high code density, as well as a multicycle architecture with a counter-based control unit and adder sharing that lead to a small hardware area. A co-processor, instruction cache, AMBA bus, internal SRAM, external memory, on-chip debugger (OCD), and peripheral I/Os are placed around the core to make a system-on-a-chip (SoC) platform. This platform is based on a modified Harvard architecture to facilitate memory access by reducing the number of access clock cycles. The SoC platform and CPU were simulated and verified at the C and the assembly levels, and FPGA prototyping with integrated logic analysis was carried out. The CPU was synthesized at the ASIC front-end gate netlist level using a $0.18{\mu}m$ digital CMOS technology with 1.8V supply, resulting in a gate count of merely 7700 at a 50MHz clock speed. The SoC platform was embedded in an FPGA on a miniature board and applied to deeply embedded IoT applications.

The Influence of the Front Surface Power and the Refraction Index on RMS Spot Diameter (전면 굴절력과 굴절률이 착락원의 크기에 미치는 영향)

  • Park, Seong-Jong;Shin, Cheol-Guen;Ju, Seok-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • To investigate the RMS SD(Root Mean Square Spot Diameter) in a back focal plane as the front surface power, the center thickness, and the refraction index vary, we use programs which are Cove V and LOSA 2.0, and consider a spectacle lens with back vertex power of -4.00D and diameter of 70 mm. We also consider the front surface power varied from 0.00 to 10.00D, the center thickness varied from 1.1 to 2.0 mm, and the indices which are $n_d$ = 1.498, 1.523, 1.586, and 1.660, respectively. As the front surface power increases the RMS SD in the back focal plane increase rapidly. When the refraction index increases, the RMS SD in the back focal plane decrease and the variation of RMS SD in the back focal plane decreases as the front surface power increases. When the center thickness of spectacle lens increases, the RMS SD in the back focal plane is constant and the edge thickness of that increases. We know from these results that the image in the back focal plane of a spherical spectacle lens improves as the front surface power increases and the refraction index decreases.

  • PDF

Seismic Response Analyses of the Structure-Soil System for the Evaluation of the Limits of the Site Coefficients (지반계수의 한계값 평가를 위한 구조물-지반체계에 대한 지진응답해석)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.67-77
    • /
    • 2007
  • Site coefficients in IBC and KBC codes have some limits to predict the rational seismic responses of a structure, because they take into account only the effect of the soil amplification without the effects of the structure-soil interaction. In this study, upper and lower limits of the site coefficients are estimated through the pseudo 3-D elastic seismic response analyses of structures built on the linear or nonlinear soil layers taking Into account the effects of the structure-soil interaction. Soil characteristics of site classes of A, B and C were assumed to be linear, and those of site classes of D and E were done to be nonlinear and the Ramberg-Osgood model was used to evaluate shear modulus and damping ratio of a soil layer depending on the shear wave velocity of the soil layer, Seismic analyses were performed with 12 weak or moderate earthquake records scaled the peak acceleration to 0.1g or 0.2g and deconvoluted as earthquake records at the bedrock located at 30m deep under the outcrop. With the study results of the elastic seismic response analyses of structures, new standard response spectrum and upper and lower limits of the site coefficients of $F_{a}\;and\;F_{v}$ at the short period range and the period of 1 second are suggested including the effects of the structure-soil interaction, and new site coefficients for the KBC code are also suggested.

A Theoretical Calculation for Angular Dependence of X-ray Beams on Extremity Phantom (말단팬텀에서 X-선 빔의 방향의존성에 관한 이론적 계산)

  • Kim, Jong-Soo;Yoon, Suk-Chul;Kim, Jang-Lyul;Kim, Kwang-Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.263-271
    • /
    • 1996
  • The ANSI N13.32 recommends that a study of the angular response of a dosimeter be carried out once, although no pass/fail criterion is given for angular response. Gamma dose equivalent conversion and angular dependence factors were calculated by using MCNP code for the case of ANSI N13.32 extremity phantoms(finger and arm) at the depth of $7mg/cm^2$. Those extremity dosimeters were assumed to be irradiated from both monoenergitic photons and ISO X-ray narrow beams. These calculated gamma dose equivalent conversion and angular dependence factors were compared to B. Grosswendt's result calculated by using X-ray beams. The result showed that the dose equivalent conversion factors of this study agreed well with that of B. Grosswendt for all energies within 2% except 7% in the case of the low energies. In the case of angular dependence factors comparison, they agreed within 3%. It was shown that angular dependence factors of the finger phantom decreased as the horizontal angle of the phantom increased for the ISO X-ray beams less than 60keV. For the higher energy X-ray beams range they decreased slightly around 40 degree, but then increased from this energy to 90 degree.

  • PDF

A Study on the Distribution Characteristics of the Small Village Wetlands in Mountainous Rural Area - Case on Geumsan-gun, Chungnam - (산지 읍면지역 소규모 마을습지 분포 특성 연구 - 충남 금산군을 사례로 -)

  • Park, Mi-Ok;Seo, Joo-Young;Yang, Seung-Bin;Koo, Bon-Hak
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.6
    • /
    • pp.37-44
    • /
    • 2019
  • This study was conducted to identify the distribution characteristics of small village wetlands in Geumsan County, an inland mountain zone, and comparing with Seocheon County, a coastal plain area with different ecological environment characteristics. Using Arc-GIS (v10.1) the village wetland code was extracted to derive the possible location of the village wetland, and the final distribution of the village was obtained by performing indoor judging work based on satellite images, aerial photographs, topographical maps, Korea Land Information System (KLIS), land use level, land cover degree (division), and land use status by local surveying and indoor analyzing. Although Geumsan County (576.66km2) is more than 60% larger than Seocheon County (358.04km2), 607 villages in Geumsan County and 570 villages in Seocheon County are capable of making similar levels of 106.5% of wetlands, but only a fraction of those in Seocheon County were found to be 67.6%. The density of the village wetlands was much lower than that of Seocheon County, a coastal plain area, because there were many mountainous areas in Geumsan County, and most of the wetlands temporarily created for water supply were removed during the analysis phase of the Jeongsa Image, so the actual wetlands of the village were judged to be only two-thirds different from those of Seocheon County.