• Title/Summary/Keyword: CODE V

Search Result 743, Processing Time 0.034 seconds

Particle-in-cell simulation feasibility test for analysis of non-collective Thomson scattering as a diagnostic method in ITER

  • Zamenjani, F. Moradi;Asgarian, M. Ali;Mostajaboddavati, M.;Rasouli, C.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.568-574
    • /
    • 2020
  • The feasibility of the particle-in-cell (PIC) method is assessed to simulate the non-collective phenomena like non-collective Thomson scattering (TS). The non-collective TS in the laser-plasma interaction, which is related to the single-particle behavior, is simulated through a 2D relativistic PIC code (XOOPIC). For this simulation, a non-collective TS is emitted from a 50-50 DT plasma with electron density and temperature of ne = 3.00 × 1013 cm-3 and Te = 1000 eV, typical for the edge plasma at ITER measured by ETS system, respectively. The wavelength, intensity, and FWHM of the laser applied in the ETS system are λi,0 = 1.064 × 10-4 cm, Ii = 2.24 × 1017 erg=s·㎠, and 12.00 ns, respectively. The electron density and temperature predicted by the PIC simulation, obtained from the TS scattered wave, are ne,TS = 2.91 × 1013 cm-3 and Te,TS = 1089 eV, respectively, which are in accordance with the input values of the simulated plasma. The obtained results indicate that the ambiguities rising due to the contradiction between the PIC statistical collective mechanism caused by the super-particle concept and the non-collective nature of TS are resolved. The ability and validity to use PIC method to study the non-collective regimes are verified.

Three-Parallel Reed-Solomon based Forward Error Correction Architecture for 100Gb/s Optical Communications (100Gb/s급 광통신시스템을 위한 3-병렬 Reed-Solomon 기반 FEC 구조 설계)

  • Choi, Chang-Seok;Lee, Han-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.48-55
    • /
    • 2009
  • This paper presents a high-speed Forward Error Correction (FEC) architecture based on three-parallel Reed-Solomon (RS) decoder for next-generation 100-Gb/s optical communication systems. A high-speed three-parallel RS(255,239) decoder has been designed and the derived structure can also be applied to implement the 100-Gb/s RS-FEC architecture. The proposed 100-Gb/s RS-FEC has been implemented with 0.13-${\mu}m$ CMOS standard cell technology in a supply voltage of 1.2V. The implementation results show that 16-Ch. RS-FEC architecture can operate at a clock frequency of 300MHz and has a throughput of 115-Gb/s for 0.13-${\mu}m$ CMOS technology. As a result, the proposed three-parallel RS-FEC architecture has a much higher data processing rate and low hardware complexity compared with the conventional two-parallel, three-parallel and serial RS-FEC architectures.

A Design of LDPC Decoder for IEEE 802.11n Wireless LAN (IEEE 802.11n 무선 랜 표준용 LDPC 복호기 설계)

  • Jung, Sang-Hyeok;Shin, Kyung-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.31-40
    • /
    • 2010
  • This paper describes a LDPC decoder for IEEE 802.11n wireless LAN standard. The designed processor supports parity check matrix for block length of 1,944 and code rate of 1/2 in IEEE 802.11n standard. To reduce hardware complexity, the min-sum algorithm and layered decoding architecture are adopted. A novel memory reduction technique suitable for min-sum algorithm was devised, and our design reduces memory size to 25% of conventional method. The LDPC decoder processor synthesized with a $0.35-{\mu}m$ CMOS cell library has 200,400 gates and memory of 19,400 bits, and the estimated throughput is about 135 Mbps at 80 MHz@2.5v. The designed processor is verified by FPGA implementation and BER evaluation to validate the usefulness as a LDPC decoder.

Electron Accelerator Shielding Design of KIPT Neutron Source Facility

  • Zhong, Zhaopeng;Gohar, Yousry
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.785-794
    • /
    • 2016
  • The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ~0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper.

Output Ccharacteristics of XeCl Excimer Laser Excited by Transeverse-Electron-Beam (횡방향 전자빔여기 XeCl 엑시머 레이저의 출력특성)

  • 류한용;이주희;김용평
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.386-393
    • /
    • 1994
  • We have investigated output characteristics of XeCI excimer laser excited by transeverse electronbeam. We used e-beam output of 880 kV, 21 kA (70 ns, FWHM) and controlled current density of e-beam by pulsed magnetic coil (4.7 kG) which was fabricated around an e-beam diode (A-K gap is 21 mm) and laser chamber. We have obtained 35 J (4 atm) of e-beam deposition energy injected into laser media. The deposition energy was converted from an exposure area of Radcolor film and rising pressure of gas media which is measured by pressure jump method. The excited volume of $320cm^{3}$ was calculated. The maximum efficiency of 1.7% was obtained with the mixing ratio of HCllXe/Ar==0.2/ 6.3/93.5% and total pressure of 3 atm. Also laser output energy and specific energy were obtained 0.52 J and 1.7 J/I, respectively. For the analysis of experimental results we have developed computer simulation code. From the good agreements with the results of experiment and simulation we could theoretically explain the XeCI* formation channel. relaxation channel, and absorption channel of 308 nm.308 nm.

  • PDF

Numerical Analysis of Internal Flow Distribution in Scale-Down APR+ (축소 APR+ 원자로 모형에서의 내부유동분포 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Woo, Sweng Woong;Kim, Do Hyeong;Kang, Min Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.855-862
    • /
    • 2013
  • A series of 1/5 scale-down reactor flow distribution tests had been conducted to determine the hydraulic characteristics of an APR+ (Advanced Power Reactor Plus), which were used as the input data for an open core thermal margin analysis code. In this study, to examine the applicability of computational fluid dynamics with the porous model to the analysis of APR+ internal flow, simulations were conducted using the commercial multi-purpose computational fluid dynamics software ANSYS CFX V.14. It was concluded that the porous domain approach for some reactor internal structures could adequately predict the flow characteristics inside a reactor in a qualitative manner. If sufficient computational resources are available, the predicted core inlet flow distribution is expected to be more accurate by considering the real geometry of the internal structures, especially upstream of the core inlet.

Shape Optimization of Impeller Blades for Bidirectional Axial Flow Pump (양방향 축류펌프용 임펠러 블레이드의 형상최적설계)

  • Baek, Seok Heum;Jung, Won Hyuk;Kang, Sangmo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1141-1150
    • /
    • 2012
  • This paper describes the shape optimization of impeller blades for an anti-heeling bidirectional axial flow pump used in ships. In general, a bidirectional axial pump has efficiency much lower than that of a classical unidirectional pump because of the symmetry of the blade type. In this study, by focusing on a pump impeller, the shape of the blades is redesigned to develop a bidirectional axial pump with higher efficiency. The commercial code employed in this simulation is CFX v.13. The CFD result of the pump torque, head, and hydraulic efficiency was compared. The orthogonal array (OA) and analysis of variance (ANOVA) techniques and surrogate-model-based optimization using orthogonal polynomials are employed to determine the main effects and their optimal design variables. According to the optimal design, we confirm an effective design variable for impeller blades and explain the optimal solution as well as the usefulness of satisfying the constraints of the pump torque and head.

Hull-form optimization of KSUEZMAX to enhance resistance performance

  • Park, Jong-Heon;Choi, Jung-Eun;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.100-114
    • /
    • 2015
  • This paper deploys optimization techniques to obtain the optimum hull form of KSUEZMAX at the conditions of full-load draft and design speed. The processes have been carried out using a RaPID-HOP program. The bow and the stern hull-forms are optimized separately without altering neither, and the resulting versions of the two are then combined. Objective functions are the minimum values of wave-making and viscous pressure resistance coefficients for the bow and stern. Parametric modification functions for the bow hull-form variation are SAC shape, section shape (U-V type, DLWL type), bulb shape (bulb height and size); and those for the stern are SAC and section shape (U-V type, DLWL type). WAVIS version 1.3 code is used for the potential and the viscous-flow solver. Prior to the optimization, a parametric study has been conducted to observe the effects of design parameters on the objective functions. SQP has been applied for the optimization algorithm. The model tests have been conducted at a towing tank to evaluate the resistance performance of the optimized hull-form. It has been noted that the optimized hull-form brings 2.4% and 6.8% reduction in total and residual resistance coefficients compared to those of the original hull-form. The propulsive efficiency increases by 2.0% and the delivered power is reduced 3.7%, whereas the propeller rotating speed increases slightly by 0.41 rpm.

"COVID-19 : Our Memory" : A Digital Archive for Social Changes caused by SARS-CoV-2 ("코로나-19 : 우리의 기억" : 코로나바이러스 감염증과 사회변화에 대한 디지털 아카이브)

  • Kim, Haklae
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.20 no.4
    • /
    • pp.229-236
    • /
    • 2020
  • In light of SARS-CoV-2's significant impact, human society has experienced rapid changes in lifestyle that it has not yet experienced before. One way this virus has influenced people's lives is the emergence of the zero-contact society, an initiative for preventing the spread of infectious diseases. As can be seen, the social impact of COVID-19 is widespread. Various issues, such as those about government policy, personal information protection, and health care, are affecting society as a whole. At the same time, factual information is difficult to track and record because of the rapid and transient nature of related events and issues. As such, a method of effectively describing COVID-19 and real-time information is necessary. The "COVID-19: Our Memory" project is an attempt to record the sociocultural impact of the coronavirus infection. This project collects major events and issues classified into several subjects, records those events from a neutral point of view, and develops a digital archive so that all records are accessible. All the data collected and built through the project, the application, including the source code and visualization, are all published to bring about new opportunities for collaboration.

A Study on Implement of Smart Battery Management System using Embedded Processor (임베디드 프로세서를 이용한 스마트 배터리 관리 시스템 구현에 대한 연구)

  • Oh, Chang-Rok;Lee, Seong-Won
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.345-353
    • /
    • 2011
  • Recently portable mobile devices such as smart-phones and notebooks have rapidly increasing demands. Those devices consume more power because they are expected to offer more complex functionality including multimedia features. For these reasons engineering efforts are changing to focus on maximizing energy efficiency within a limited battery capacity instead of increasing computational performance. In this paper, we propose a battery management system using event driven programming technique on a embedded processor. We also show that the proposed system satisfies SBS (Smart Battery Specification) v1.1. The proposed system maintains minimum code size and memory size comparing to those of RTOSs. The proposed system can be also easily incorporated in the conventional RTOSs as a form of firmware.