Three-Parallel Reed-Solomon based Forward Error Correction Architecture for 100Gb/s Optical Communications

100Gb/s급 광통신시스템을 위한 3-병렬 Reed-Solomon 기반 FEC 구조 설계

  • Choi, Chang-Seok (School of Information and Communication Engineering, Inha University) ;
  • Lee, Han-Ho (School of Information and Communication Engineering, Inha University)
  • 최창석 (인하대학교 정보통신공학부) ;
  • 이한호 (인하대학교 정보통신공학부)
  • Published : 2009.11.25

Abstract

This paper presents a high-speed Forward Error Correction (FEC) architecture based on three-parallel Reed-Solomon (RS) decoder for next-generation 100-Gb/s optical communication systems. A high-speed three-parallel RS(255,239) decoder has been designed and the derived structure can also be applied to implement the 100-Gb/s RS-FEC architecture. The proposed 100-Gb/s RS-FEC has been implemented with 0.13-${\mu}m$ CMOS standard cell technology in a supply voltage of 1.2V. The implementation results show that 16-Ch. RS-FEC architecture can operate at a clock frequency of 300MHz and has a throughput of 115-Gb/s for 0.13-${\mu}m$ CMOS technology. As a result, the proposed three-parallel RS-FEC architecture has a much higher data processing rate and low hardware complexity compared with the conventional two-parallel, three-parallel and serial RS-FEC architectures.

본 논문에서는 차세대 100-Gb/s급 광통신 시스템을 위한 3-병렬 Reed-Solomon (RS) 디코더 기반의 고속 Forward Error Correction (FEC) 구조를 제안한다. 제안된 16채널 RS기반 FEC 구조는 4개의 신드롬 계산 블록이 1개의 Key Equation Solver (KES) 블록을 공유하는 3-병렬 4채널 RS 기반 FEC 구조 4개로 구성되어 있다. 제안하는 100-Gb/s RS 기반 FEC는 1.2V의 공급전압의 $0.13{\mu}m$ CMOS 공정을 이용하여 구현하였다. 구현 결과 제안된 RS기반 FEC 구조는 300MHz의 동작 주파수에서 115-Gb/s 의 데이터 처리율을 가지며, 기존의 RS 기반 FEC 구조에 비해 높은 데이터 처리율과 낮은 하드웨어 복잡도를 보여주고 있다.

Keywords

References

  1. IEEE P802.3ba 4IEEE P802.3ba 4OGb/s and lOOGb/s Ethrnet Task Force
  2. ITUT G.709/Y.1331 "Interfaces for the Optical Transport Network(OTN)" Mar. 2003
  3. L. Song, M-L. Yu and M. S. Shaffer, "10 and 40-Gb/s Forward Error Correction Devices for Optical Communications," IEEE Journal of Solid-State Circuits, vol. 37, no. 11, pp. 1565-1573, Nov. 2002 https://doi.org/10.1109/JSSC.2002.803931
  4. S. B. Wicker, "Error Control Systems for Digital Communication and Storage," Prentice Hall, 1995
  5. H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yuen and I. S. Reed, "A VLSI Design of a Pipeline Reed-Solomon Decoder," IEEE Trans. on Computers, vol. C-34, no.5, pp.393-403, May 1985 https://doi.org/10.1109/TC.1985.1676579
  6. H. Lee, "High-Speed VLSI Architecture for Parallel Reed-Solomon Decoder," IEEE Trans. on VLSI Systems, vol. 11, no.2 pp. 288-294, April 2003 https://doi.org/10.1109/TVLSI.2003.810782
  7. S. Lee, and H Lee, "A High-Speed Pipelined Degree-Computationless Modified Euclidean Algorithm Architecture for Reed-Solomon Decoders," IEICE Transactions on fundamentals of Electronics, Communications, and Computer Sciences, vol. E91-A, no. 3, pp. 830-835, March 2008 https://doi.org/10.1093/ietfec/e91-a.3.830
  8. S. Lee, C-S. Choi and H. Lee, "Two-parallel Reed-Solomon based FEC Architecture for Optical Communications," IEICE Electronics Express, vol. 5, no. 10, pp. 374-380, May 2008 https://doi.org/10.1587/elex.5.374
  9. 이승범, 이한호, '광통신시스템을 위한 40Gb/s Forward Error Correction 구조 설계,' 전자공학회논문지, 제45권 SD편 제2호, 101-111쪽, 2008년 2월