• Title/Summary/Keyword: CODE V

Search Result 736, Processing Time 0.027 seconds

Developement of Scope for Military Rangefinder Using Schmidt Prism and Biprism Theory of Optometric Instrument (안광학기기에 사용되는 바이프리즘원리와 슈미트 프리즘을 이용한 군사 거리측정기용 스코프 개발)

  • Cha, Jung-Won;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.2
    • /
    • pp.167-175
    • /
    • 2015
  • Purpose: The new-type rangefinder, which is using the biprism principle, is introduced to develop the range finder which can be easily carried by soldiers, and in order to realize those technologies specifically, we try to develop a scope for military rangefinder by doing optical design which can secure enough space to move the biprism. Methods: After setting up the verious initial condition to realize two kinds of goals, that are the securement of enough space to move the biprism and the easy-exchangeability of two kinds of biprisms, and then the optical system was optimized by using optical design program CodeV in order to minimize the finite ray aberrations. Results: We designed the biprism housing to makes it possible to swap the two kinds of biprisms. It was appeared that the Schmidt prism is suitable as erecting prism which can make sure the space to move the biprism. 16.5 mm was good for the face length of Schmidt prism. The optical system with a Schmidt prism and a biprism was designed, and the finite ray aberrations was minimized. Conclusions: We developed a 5X scope for an optical rangefinder using a biprism and a Schmidt prism with 16.5 mm face length. This scope is valid for the optical system which has the effective field angle of ${\pm}3.6^{\circ}$, and the finite ray aberrations are well controlled within the ${\pm}8.95^{\prime}$.

Raman Spectromter for Detection of Chemicals on a Road (지표면 화학물질 측정을 위한 라만분광장치)

  • Ha, Yeon Chul;Lee, Jae Hwan;Koh, Young Jin;Lee, Seo Kyung;Kim, Yun Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.116-121
    • /
    • 2017
  • In this paper, a Raman spectrometer is designed to detect chemicals contaminating the ground. The system is based on Raman spectroscopy, which is spectral analysis of scattered light from chemicals, induced by a laser. The system consists of a transmitting-optics module with a laser to induce Raman-scattered light from the sample, a receiving-optics module to collect the scattered light, and a spectrograph to separate the collected light into a wavelength spectrum. The telescope, a part of the receiving-optics module, is designed to produce a focal spot in the same position for variable measurement distances using the code V simulator, considering the distance change between the system and the road. The Raman spectra of 12 chemicals on a glass surface and on a concrete sample were measured. Intensity differences between the Raman spectra acquired on a glass surface and on a concrete sample were observed, but the characteristics of the spectra according to the chemicals on them were similar. Additionally, the Raman spectrum of PTFE (polytetrafluoroethylene) was measured at various distances. The measured and simulated optical throughputs were similar. In conclusion, it is confirmed that with this system the Raman spectrum can be measured, irrespective of the distance change.

A Feasibility Study on the Development of Multifunctional Radar Software using a Model-Based Development Platform (모델기반 통합 개발 플랫폼을 이용한 다기능 레이다 소프트웨어 개발의 타당성 연구)

  • Seung Ryeon Kim ;Duk Geun Yoon ;Sun Jin Oh ;Eui Hyuk Lee;Sa Won Min ;Hyun Su Oh ;Eun Hee Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.23-31
    • /
    • 2023
  • Software development involves a series of stages, including requirements analysis, design, implementation, unit testing, and integration testing, similar to those used in the system engineering process. This study utilized MathWorks' model-based design platform to develop multi-function radar software and evaluated its feasibility and efficiency. Because the development of conventional radar software is performed by a unit algorithm rather than in an integrated form, it requires additional efforts to manage the integrated software, such as requirement analysis and integrated testing. The mode-based platform applied in this paper provides an integrated development environment for requirements analysis and allocation, algorithm development through simulation, automatic code generation for deployment, and integrated requirements testing, and result management. With the platform, we developed multi-level models of the multi-function radar software, verified them using test harnesses, managed requirements, and transformed them into hardware deployable language using the auto code generation tool. We expect this Model-based integrated development to reduce errors from miscommunication or other human factors and save on the development schedule and cost.

Construction of voxel head phantom and application to BNCT dose calculation (Voxel 머리팬텀 제작 및 붕소중성자포획요법 선량계산에의 응용)

  • Lee, Choon-Sik;Lee, Choon-Ik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.93-99
    • /
    • 2001
  • Voxel head phantom for overcoming the limitation of mathematical phantom in depleting anatomical details was constructed and example dose calculation for BNCT was performed. The repeated structure algorithm of the general purpose Monte Carlo code, MCNP4B was applied for yokel Monte Carlo calculation. Simple binary yokel phantom and combinatorial geometry phantom composed of two materials were constructed for validating the voxel Monte Carlo calculation system. The tomographic images of VHP man provided by NLM(National Library of Medicine) were segmented and indexed to construct yokel head phantom. Comparison of doses for broad parallel gamma and neutron beams in AP and PA directions showed decrease of brain dose due to the attenuation of neutron in eye balls in case of yokel head phantom. The spherical tumor volume with diameter, 5cm was defined in the center of brain for BNCT dose calculation in which accurate 3 dimensional dose calculation is essential. As a result of BNCT dose calculation for downward neutron beam of 10keV and 40keV, the tumor dose is about doubled when boron concentration ratio between the tumor to the normal tissue is $30{\mu}g/g$ to $3{\mu}g/g$. This study established the voxel Monte Carlo calculation system and suggested the feasibility of precise dose calculation in therapeutic radiology.

  • PDF

Development of a High Resolution SPECT Detector with Depth-encoding Capability for Multi-energy Imaging: Monte Carlo Simulation (다중에너지 영상 획득을 위한 Depth-Encoding 고분해능 단일광자단층촬영 검출기 개발: 몬테칼로 시뮬레이션 연구)

  • Beak, Cheol-Ha;Hwang, Ji-Yeon;Lee, Seung-Jae;Chung, Yong-Hyun
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • The aim of this work was to establish the methodology for event positioning by measuring depth of interaction (DOI) information and to evaluate the system sensitivity and spatial resolution of the new detector for I-125 and Tc-99m imaging. For this purpose, a Monte Carlo simulation tool, DETECT2000 and GATE were used to model the energy deposition and light distribution in the detector and to validate this approach. Our proposed detector module consists of a monolithic CsI(Tl) crystal with dimensions of $50.0{\times}50.0{\times}3.0\;mm^3$. The results of simulation demonstrated that the resolution is less than 1.5 mm for both I-125 and Tc-99m. The main advantage of the proposed detector module is that by using 3 mm thick CsI(Tl) with maximum-likelihood position-estimation (MLPE) method, high resolution I-125 imaging and high sensitivity Tc-99m imaging are possible. In this paper, we proved that our new detector to be a reliable design as a detector for a multi-energy SPECT.

Development of Analytical Method for Cymoxanil in Agricultural Commodities using HPLC/UVD (HPLC/UVD를 이용한 농산물 중 cymoxanil의 개별 분석법 확립)

  • Kim, Ji-Yoon;Kim, Hea-Na;Kim, Ja-Young;Kim, Jong Geol;Ham, Hun-Ju;Lee, Young-Deuk;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.2
    • /
    • pp.69-78
    • /
    • 2014
  • In the present study, we developed an official individual analytical method for cymoxanil using HPLC/UVD, respectively in different representative crops. Individual analytical methods for these pesticides are not included in the Korea food code. The samples were extracted with acetonitrile, concentrated and partitioned with dichloromethane and saturated sodium chloride solution. For cymoxanil, extracts were concentrated and clean-up through silica gel column chromatography with dicloromethane/acetone (60/40 v/v) and subjected to instrumental analysis. The limit of detection (LOD) for cymoxanil were 0.1 ng and 1 ng respectively and limit of quantitation (LOQ) were 0.02 mg/kg. Recoveries for cymoxail ranged from 79.6~107.6% respectively, at fortification level of 0.02 mg/kg (LOQ), 0.2 mg/kg (10 LOQ) and 1.0 mg/kg (50 LOQ) and the coefficient of variation (CV) was less than 10%, regardless of sample types. These results were further confirmed with LC/MS. The proposed simultaneous analysis method is reproducible and sensitive enough to determine the residues of cymoxanil in the agricultural commodities. According to the validation data and performance characteristics and high sample throughput, the proposed method is suitable for routine application.

Pseudomonas oleovorans Strain KBPF-004 Culture Supernatants Reduced Seed Transmission of Cucumber green mottle mosaic virus and Pepper mild mottle virus, and Remodeled Aggregation of 126 kDa and Subcellular Localization of Movement Protein of Pepper mild mottle virus

  • Kim, Nam-Gyu;Seo, Eun-Young;Han, Sang-Hyuk;Gong, Jun-Su;Park, Cheol-Nam;Park, Ho-Seop;Domier, Leslie L;Hammond, John;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.393-401
    • /
    • 2017
  • Efforts to control viral diseases in crop production include several types of physical or chemical treatments; antiviral extracts of a number of plants have also been examined to inhibit plant viral infection. However, treatments utilizing naturally selected microorganisms with activity against plant viruses are poorly documented. Here we report isolation of a soil inhabiting bacterium, Pseudomonas oleovorans strain KBPF-004 (developmental code KNF2016) which showed antiviral activity against mechanical transmission of tobamoviruses. Antiviral activity was also evaluated in seed transmission of two tobamoviruses, Pepper mild mottle virus (PMMoV) and Cucumber green mottle mosaic virus (CGMMV), by treatment of seed collected from infected pepper and watermelon, respectively. Pepper and watermelon seeds were treated with culture supernatant of P. oleovorans strain KBPF-004 or control strain ATCC 8062 before planting. Seeds germinated after treatment with water or ATCC 8062 yielded about 60% CGMMV or PMMoV positive plants, whereas < 20% of KBPF-004-treated seeds were virus-infected, a significantly reduced seed transmission rate. Furthermore, supernatant of P. oleovorans strain KBPF-004 remodeled aggregation of PMMoV 126 kDa protein and subcellular localization of movement protein in Nicotiana benthamiana, diminishing aggregation of the 126 kDa protein and essentially abolishing association of the movement protein with the microtubule network. In leaves agroinfiltrated with constructs expressing the coat protein (CP) of either PMMoV or CGMMV, less full-size CP was detected in the presence of supernatant of P. oleovorans strain KBPF-004. These changes may contribute to the antiviral effects of P. oleovorans strain KBPF-004.

Study on safety performance evaluation of stationary SOFC stack (건물용 고체산화물연료전지 스택 안전성능평가 연구)

  • Park, Tae Seong;Lee, Eun Kyung;Lee, Seung Kuk
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.1-12
    • /
    • 2018
  • The code and standards related to fuel cells were analyzed to derive the SOFC(Solid Oxide Fuel Cell) stack safety performance evaluation items and evaluation methode. Safety performance evluation of the SOFC stack was tested by quoting derived test items. The stack used in the test is an anode-supported type 2 Cell stack (Active surface area : 220cm) manufactured by MICO Inc, and SOFC stack safety performance evaluation system used for the test is self-manufactured. We conducted a leakage test, current voltage characteristic test, rated output test, and power response characteristics test. In the safety performance evaluation test, the stack showed no gas leakage, the maximum output and rated output was recorded to 65.6 W(1.41 V, 46.5 A, $422mA/cm^2$), 62.3 W(1.57 V, 40 A, $363mA/cm^2$). In the power response characteristics test verified that the output is kept stable within two seconds. At the maximum load (40 A) and the minimum load (8 A), the output was recorded 62 W and 16W in $750^{\circ}C$. This study will contribute to the universalization and to provide much safe environment of operating the solid oxide fuel cell system.

A Design of CMOS 5GHz VCO using Series Varactor and Parallel Capacitor Banks for Small Kvco Gain (작은 Kvco 게인를 위한 직렬 바랙터와 병렬 캐패시터 뱅크를 이용한 CMOS 5GHz VCO 설계)

  • Mi-Young Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.139-145
    • /
    • 2024
  • This paper presents the design of a voltage controlled oscillator (VCO) which is one of the key building blocks in modern wireless communication systems with small VCO gain (Kvco) variation. To compensate conventional large Kvco variation, a series varactor bank has been added to the conventional LC-tank with parallel capacitor bank array. And also, in order to achieve excellent phase noise performance while maintaining wide tuning range, a mixed coarse/fine tuning scheme(series varactor array and parallel capacitor array) is chosen. The switched varactor array bank is controlled by the same digital code for switched capacitor array without additional digital circuits. For use at a low voltage of 1.2V, the proposed current reference circuit in this paper used a current reference circuit for safety with the common gate removed more safely. Implemented in a TSMC 0.13㎛ CMOS RF technology, the proposed VCO can be tuned from 4.4GH to 5.3GHz with the Kvco (VCO gain ) variation of less than 9.6%. While consuming 3.1mA from a 1.2V supply, the VCO has -120dBc/Hz phase noise at 1MHz offset from the carrier of the 5.3 GHz.

Calculation of Dose Conversion Coefficients in the Anthropomorphic MIRD Phantom in Broad Unidirectional Beams of Monoenergetic Photons (MIRD 인형팬텀의 넓고 평행한 감마선빔에 대한 선량 환산계수 계산)

  • Chang, Jai-Kwon;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 1997
  • The conversion coefficients of effective dose per unit air kerma and equivalent dose per unit fluence were calculated by MCNP4A code for antero-posterior(AP) and postero- anterior(PA) incidence of broad, unidirectional beams of photons into anthropomorphic MIRD phantom. Calculations have been performed for 20 monoenergetic photons of energy ranging from 0.03 to 10 MeV. The conversion coefficients showed a good agreement with the corresponding values given in the draft publication of joint task group of ICRP and ICRU within 10%. The deviations may arise from the differences of geometry in the MIRD phantom and the ADAM/EVE phantoms, and the differences in the codes and cross-section data used. Inclusion of a specific oesophagus model results in effective dose slightly different(5% at most) from the effective doses obtained by adopting the equivalent doses for the thymus or pancreas. Deletion of the ULI from the remainder organ appeared not to be significant for the cases of photon dosimetry covered in this study.

  • PDF