• Title/Summary/Keyword: COD Removal

Search Result 1,129, Processing Time 0.029 seconds

Fouling behaviours of two stages microalgae/membrane filtration system applied to palm oil mill effluent treatment

  • Teow, Yeit Haan;Wong, Zhong Huo;Takriff, Mohd Sobri;Mohammad, Abdul Wahab
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.373-383
    • /
    • 2018
  • Fouling by solids and microorganisms is the major obstacle limiting the efficient use of membrane wastewater treatment. In our previous study, two stages microalgae/membrane filtration system was proposed to treat anaerobic digested palm oil mill effluent (AnPOME). This two stages microalgae/membrane filtration system had showed great potential for the treatment of AnPOME with high removal of COD, $NH_3-N$, $PO_4{^{3-}}$, TSS, turbidity, and colour. However, fouling behavior of the membrane in this two stages microalgae/membrane filtration system was still unknown. In this study, empirical models that describe permeate flux decline for dead-end filtration (pore blocking - complete, intermediate, and standard; and cake layer formation) presented by Hermia were used to fit the experimental results in identifying the fouling mechanism under different experimental conditions. Both centrifuged and non-centrifuged samples were taken from the medium with 3 days RT intervals, from day 0 to day 12 to study their influence on fouling mechanisms described by Hermia for ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) filtration mode. Besides, a more detailed study on the use of resistance-in-series model for deadend filtration was done to investigate the fouling mechanisms involved in membrane filtration of AnPOME collected after microalgae treatment. The results showed that fouling of UF and NF membrane was mainly caused by cake layer formation and it was also supported by the analysis for resistance-in-series model. Whereas, fouling of RO membrane was dominated by concentration polarization.

Anaerobic Digestion of Agricultural Wastes and 1ts Benefits (농산폐기물(農産廢棄物)의 메탄발효(醱酵)와 그 이점(利點))

  • Park, Young-Dae
    • Applied Biological Chemistry
    • /
    • v.27
    • /
    • pp.3-17
    • /
    • 1984
  • Anaerobic digestion has recently attracted all over the world and Korea also shows no exception. The major benefits of anaerobic digestion are energy production, water pollution control, pathogen reduction and effective manure production. In Korea it was recognized in late sixties that there was a positive need to find alternative energy for farmers household. The main traditional energy sources in rural area were crop residues and forestry products. Therefore Office of Rural Development through its Rural Guidance Bureau disseminated about 29,000 household biogas units from 1969 to 1975 to provide cooking fuel for farmers household and to improve the mode of farmers living standards. The units were welcomed by farmers at that time. Now, however, most of them are not using due to a number of reasons associated with cold winter and some techno-economical problems (in those day, fossil fuel was quite expensive to compare with other prices and since then farmers income was quickly increased). The author studied on bag type household biogas plant to solve some technical problems of existing household biogas plants, but this also has little appeal for the farmers. From 1977 author studied on village scale biogas plant with two pilot plants. From the viewpoint of energy production, COD removal, kill rate of pathogen and fertilizer value, the results obtained from the experiments were quite promising, but the construction cost of the village scale biogas plant was too high for the farmers in Korea. To find most suitable biogas plant for farmers in Korea through the simplifying the biogas digester, the author developed batch-load biogas plant. By feeding coarse crop residues and manures, total solids concentrations of the batch-load biogas plant are about 28 percent which is much higher than continous digester of 5-8 percent. The batch-load biogas plant was welcomed by many farmers in Korea when it was reported on TV and newspapers. The plant was disseminated 154 units in 1982, 766 units in 1983 and 812 units in 1984 as a promissing project. Besides these biogas plant experiments, studies were also conducted 1) to determine gas production rate with agricultural wastes, 2) to evaluate the effect of loading rate, dilution, retention time on biogas production, 3) to project the amount of potencial energy from agricultural wastes.

  • PDF

Advanced Wastewater Treatment using Bioreactor Combined with Alternative Membrane (하수의 고도처리를 위한 저비용 저에너지의 대체 막을 조합한 생물반응기의 개발)

  • Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • In order to decrease the high costs of membrane process, we have tried to develop two alternatives to membrane; a cartridge type filter and a metal membrane were tested for the high permeation flux with low cost and low energy. This research mainly focused on three points; 1) operation with high permeation flux by using of a cartridge type filter and a metal membrane, 2) removals of the filterable organic materials (FOC) by pretreatments for the membrane fouling control, and 3) advanced wastewater treatment by SMBR process with intermittent aeration and high MLSS. An Intermittently aerated membrane bioreactor using a submerged micro filter (cartridge type) was applied in laboratory scale for the advanced wastewater treatment. To minimize membrane fouling, intermittent aeration was applied inside of the filter with $3.0kg_f/cm^2$. The experiments was conducted for 6 months with three different HRTs (8, 10, 12 hr) and high MLSS of 6,000 and 10,000mg/L. The filtration process could be operated up to 50 days with permeation flux of 500LMH. Regardless of the operating conditions, more than 95% of COD, BOD and SS were removed. Fast and complete nitrification was accomplished, and denitrification was appeared to be the rate-limiting step. More than 75% T-N could be removed due to the endogenous denitrification. T-P removal efficiency was increased to 80% under the condition of MLSS 10,000mg/L.

Optimal Design and Process Parameters of Biological Nutrent Removal Processes using Activated Sludge Model No.2d (ASM No. 2d를 이용한 생물학적 질소, 인 제거 공정의 최적 설계 및 운전인자 고찰)

  • Ahn, Ho-Chul;Park, Myung-Gyun;Yoo, Hee-Chan;Kim, Dae-Sung;Ahn, Won-Sik;Heo, Yong-Rok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1400-1404
    • /
    • 2006
  • 생물학적 질소, 인 제거 공정(이하 BNR)의 운전에 있어서 최적 유입수의 C/N(COD/TKN)비, SRT 및 온도의 범위 및 정량적 수치 등은 유기물 뿐 만아니라 질소, 인의 처리 효율에 있어서 매우 중요하다. 특히, 외국과 다른 저농도 유기물 특성을 보이는 국내 하수에 대해서는 BNR 공정의 선택과 설계 및 운전인자의 선별이 무엇보다도 중요한 역할을 한다. 본 연구에서는 IAWQ에서 제시한 ASM No.2d를 기초로 하여 만들어진 전산모형인 Envirosim사의 Biowin 프로그램을 시뮬레이션 도구로 활용하여, 국내 하수에 비교적 적용하기 용이한 A2/O 공정과 MUCT 공정에 대한 유기물, 질소 및 인처리 효율을 비교하고 유입수의 C/N와 SRT 및 온도에 따른 질소, 인 처리 특성과 유출수의 거동 등을 파악하였다. 시뮬레이션 결과, 국내 하수에서는 A2/O 보다는 MUCT 공정이 질소, 인 처리효율이 더 크게 나타났다. 온도와 SRT가 일정한 상태에서 C/N비는 7이상에서 TKN과 TP제거효율이 양호하게 나타났고, 온도와 C/N비를 일정한 조건에서는 SRT가 7일을 넘어서면 효율이 급격히 낮아지는 현상을 관찰할 수 있었다. 온도조건 실험에서는 $20^{\circ}C$이하, 특히 국내 하수처리장에 BNR 적용시 설게조건인 $13^{\circ}C$에 근접해서는 TKN의 제거효율은 급격히 떨어지는 반면에 인 제거효율이 상승하는 것으로 나타났다.

  • PDF

Correlation of Releases of Nutrient Salts in Sediment with Vicinal Oxic Conditions (퇴적물의 영양염류 용출과 호기적 조건과의 상관성 분석)

  • Cho, Dae-Chul;Lee, Eun-Mi;Park, Byung-Gi;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.845-855
    • /
    • 2011
  • The aim of this paper is to correlate the release characteristics of marine and lake sediment with their vicinal oxic conditions. We performed lab-scale simulation experiments using field sediment and water in order to compare the release concentrations and the release rates one another. To provide a few different kinds of oxic environments we used natural air flow and some oxygen releasing compounds such as $CaO_2$ and $MgO_2$. In case of phosphates, in each oxic condition, removal of phosphorus via biological activity and that via salt precipitation with the metal ions lowered the release rates. The behavior of the nitrogen-origin salts seemed to greatly depend on the typical biological actions - growth of biomass, nitrification, and partial denitrification. Generally speaking, the control of releases of $NH_3$-N, $PO_4$-P, T-N and T-P was successful under the oxic conditions meanwhile COD, nitrates and nitrites were difficult to reduce the releases into the bulk water because of the considerable microbial oxidation. Based on typical diffusive mass transfer kinetics the changes of concentrations of the nutrients were computed for qualitative and quantitative comparisons.

Assessment of Degradation Rate Coefficient and Temperature Correction Factor by Seasonal Variation of Concentration and Temperature in Livestock Wastewater Treatment in Field Scale (현장수준의 축산폐수처리에 있어서 계절별 농도 및 온도변화에 따른 분해반응계수 및 온도보정계수의 산정)

  • 박석환
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.90-95
    • /
    • 1996
  • This study was performed to calculate the degration rate coefficient, operating parameters to meet the effluent standards, and the temperature adjustment coefficients to each parameter of pollution by seasonal variation of concentration and temperature of influent in livestock wastewater treatment by sequencing batch reactor process in field scale. The followings are the conclusions that were derived from this study. 1. In the field, temperature of livestock wastewater in reactor was 20.3$\circ$C in summer and 6.0$\circ$C in winter. The ratio of BOD:TKN: T-P in influent was 100:80:7. BOD loadings in winter and spring were 0.26 and 0.43 kg $BOD/m^3$ day, respectively. Those in summer and fall were 0.25 and 0.13 kg $BOD/m^3$ day, respectively. 2. The degradation rate coefficient for TKN was larger in summer and fall in which temperature was high than that in which temperature was high than that in winter and spring in which concentration was high. On the contrary, the phosphorus uptake rate was larger in winter and spring than that in summer and fall. 3. The hydraulic retention time in winter and spring was longer than that in summer and fall. Especially, in order to meet the standard for TKN of 120 mg/l in winter in which temperature of wastewater was 6.0$\circ$C, as the MLSS concentration was increased from 4, 000 to 7, 000 mg/l, the hydraulic retention time was increased from 212 to 121 hours. But, in order to shorten that less than 121 hours for the economical wastewater treatment, countermeasure to increase temperature of wastewater in the reactor should be considered. 4. the temperature adjustment coefficients for BOD, $COD_{Mn}$, TKN and T-P were 1.0241, 1.0225, 1.0541 and 1.0495, respectively. Namely, the treatment of TKN was most sensitively affected by temperature. For the purpose of the effective removal of nitrogen and phosphorus which are sensitive to temperature, it is necessary to keep the temperature of livestock wastewater more than 20$\circ$C which is the temperature of it in summer.

  • PDF

Performance evaluation of submerged membrane bioreactor for model textile wastewater treatment

  • Guembri, Marwa;Saidi, Neila;Neifar, Mohamed;Jaouani, Atef;Heran, Marc;Ouzari, Hadda-Imene
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.123-130
    • /
    • 2020
  • Submerged Membrane bioreactor (SMBR) is one of the last techniques that allow a high quality of treated industrial effluents by coupling biological treatment and membrane separation. Thus, this research was an effort to evaluate performance of a SMBR treating a model textile wastewater (MTWW). Different SMBR operating parameters like mixed liquor suspended solids (MLSS) and Dissolved oxygen concentration, hydraulic retention time (HRT), and nutrients addition (N and P) have been investigated. MTWW (influent to the SMBR) was generated using the reactive azo-dye, Novacron blue FNG (100mg/L feed concentration). Results of MTWW treatment using SMBR under optimal operating conditions (MLSS, 4.2-13.3g/L; HRT, 4 days; pH, 6.9-7.2; conductivity, 400-900 μS/cm and temperature, 19.4-22.2 ℃) showed that COD and blue colour treatment performances are between 94-98% and 30-80%, respectively. It is concluded that SMBR can be used in large scale textile wastewater treatment plants to improve effluent quality in order to meet effluent discharge standards.

Performance of a Recirculating Aquarium System for the Culture and Holding of Marine Fish

  • Peng Lei;Jo Jae-Yoon
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.2
    • /
    • pp.76-83
    • /
    • 2004
  • To supply fresh and quality quarantined seafood in live seafood specialty restaurants, facilities for short-term culture or holding of live marine fish and shellfish are a necessity. In this study, the performance of a simple recirculating aquarium system for the culture and holding of marine fish was evaluated. The aquarium system consisted of a culture tank, a foam fractionator for solids removal, and a Styrofoam bead filter for nitrification and solids trapping. In the first trial, the aquarium was stocked with a total of 12 kg Korean rockfish, which were fed approximately $0.5\%$ of the total fish body weight daily. During the 2-month culture period, total ammonia nitrogen (TAN) and nitrite nitrogen $(NO_2-N)$ concentrations remained below 1mg/L and 2mg/L, respectively. The chemical oxygen demand (COD) fluctuated between 13.6 and 31.2 mg/L on selected sampling days. The total suspended solids (TSS) removed by the foam fractionator was between 2.7 and 4.6g daily. The Styrofoam bead filter not only reduced TAN and $NO_2-N$ in the culture tank water, but also trapped solids equivalent to 8.3-26.7\% of the weight of feed supplied. In Trial 2, 30kg of live fish were held in the aquarium without feeding for a 24-hour period and the water quality parameters were monitored. TAN and $NO_2-N$ concentrations first increased and then decreased to around 0.3mg/L. These results demonstrate that the recirculating aquarium system is a functional option for the short-term culture or holding of marine fish.

Correlationship of Vertical Distribution for Ammonia Ion, Nitrate Ion and Nitrifying Bacteria in a Fixed Bed Nitrifying Biofilm

  • Choi, Gi-Chung;Byun, Im-Gyu
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1455-1462
    • /
    • 2012
  • The vertical distributions of nitrifying bacteria in aerobic fixed biofilm were investigated to evaluate the relationship between nitrification performance and microbial community at different HRT. Fluorescent in situ hybridization (FISH) and portable ion selective microelectrode system were adopted to analyze microbial communities and ions profiles according to the biofilm depth. Cilia media packed MLE (Modified Ludzack-Ettinger) like reactor composed of anoxic, aerobic I/II was operated with synthetic wastewater having COD 200 mg/L and $NH_4{^+}$-N mg/L at HRT of 6 hrs and 4 hrs. Total biofilm thickness of aerobic I, II reactor at 4 hrs condition was over two times than that of 6 hrs condition due to the sufficient substrate supply at 4 hrs condition (6 hrs; aerobic I 380 ${\mu}m$ and II 400 ${\mu}m$, 4 hrs; aerobic I 830 ${\mu}m$ and II 1040 ${\mu}m$). As deepen the biofilm detection point, the ratio of ammonia oxidizing bacteria (AOB) was decreased while the ratio of nitrite oxidizing bacteria (NOB) was maintained similar distribution at both HRT condition. The ratio of AOB was higher at 4 hrs than 6 hrs condition and $NH_4{^+}$-N removal efficiency was also higher at 4 hrs with 89.2% than 65.4% of 6 hrs. However, the ratio of NOB was decreased when HRT was reduced from 6 hrs to 4 hrs and $NO_2{^-}$-N accumulation was observed at 4 hrs condition. Therefore, it is considered that insufficient HRT condition could supply sufficient substrate and enrichment of AOB in all depth of fixed biofilm but cause decrease of NOB and nitrite accumulation.

A Study on the Preparation of the Dimensionally Stable Anode(DSA) with High Generation Rate of Oxidants(II) (산화제 생성율이 높은 촉매성 산화물 전극(DSA)의 개발에 관한 연구(II))

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.18 no.1
    • /
    • pp.61-72
    • /
    • 2009
  • Fabrication and oxidants production of 3 or 4 components metal oxide electrode, which is known to be so effective to destruct non-biodegradable organics in wastewater, were studied. Five electrode materials (Ru as main component and Pt, Sn, Sb and Gd as minor components) were used for the 3 or 4 components electrode. The metal oxide electrode was prepared by coating the electrode material on the surface of the titanium mesh and then thermal oxidation at $500^{\circ}C$ for 1h. The removed RhB per 2 min and unit W of 3 components electrode was in the order: Ru:Sn:Sb=9:1:1 > Ru:Pt:Gd=5:5:1 > Ru:Sn=9:1 > Ru:Sn:Gd=9:1:1 > Ru:Sb:Gd=9:1:1. Although RhB decolorization of Ru:Sn:Sb:Gd electrode was the highest among the 4 components electrode, the RhB decolorization and oxidants formation of the Ru:Sn:Sb=9:1:1 electrode was higher than that of the 3 and 4 components electrode. Electrogenerated oxidants (free Cl and $ClO_2$) of chlorine type in 3 and 4 components electrode were higher than other oxidants such as $H_2O_2\;and\;O_3$. It was assumed that electrode with high RhB decolorization showed high oxidant generation and COD removal efficiency. OH radical which is electrogenerated by the direct electrolysis was not generated the entire 3 and 4 components electrode, therefore main mechanism of RhB degradation by metal oxide electrode based Ru was considered indirect electrolysis using electrogenerated oxidants.