• Title/Summary/Keyword: COD(chemical oxygen demand)

Search Result 514, Processing Time 0.023 seconds

A Study of Antimicrobial Resistance in Escherichia coli and the Distribution of Indicator Microorganisms in Asan City (아산시 지표미생물의 분포와 Escherichia coli의 항생제 내성에 관한 연구)

  • Lee, Geun-Yeol;Kim, Keun-Ha;Kwon, Mun-Ju;Kwon, Hyuk-Ku;Kim, Yeon-Hee;Lee, Jang-Hoon
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.229-235
    • /
    • 2010
  • Efforts to evaluate water pollution using indicator microorganisms have been underway for decades, and driven by research on water purity control applications, water quality criteria are growing more and more strict. Furthermore, recent reports indicate that high concentrations of antibiotics are not absorbed, and are present in excrement from animals and humans dosed with unnecessarily high levels of antibiotics. This has emerged as very important issue from the standpoint of being an ecological and health hazard. In this study, water pollution was analyzed through physicochemical and microbiological means, and antibiotic resistance in indicator microorganisms was assessed. In physicochemical analysis, biochemical oxygen demand (BOD)$_5$ and chemical oxygen demand (COD)$_{Mn}$ evaluation showed that pollution by organisms was highest at the G1 location with a high human population, and the DP location which has many livestock-containing households. The indicator organism levels at the G1 location were: Total Coliforms (1205 colony forming units (CFU)/100 ml), Fecal Coliforms (270 CFU/100 ml), Escherichia coli (253 CFU/100 ml) and Fecal Streptococci (210 CFU/100 ml), while for the DP location levels were: Total Coliforms (1480 CFU/100 ml), Fecal Coliforms (438 CFU/100 ml), E. coli (560 CFU/100 ml), and Fecal Streptococci (348 CFU/100 ml). Levels of fecal indicator microorganisms such as Fecal Coliforms, E. coli and Fecal Streptococci were high at all locations in the fall (the period after the rainy season), and the yearly distribution was similar between these organisms. If the number of livestock-containing households was high, almost all strains of E. coli (as distinct from the other indicator organisms) showed resistance to antibiotics, with the degree of resistance varying between areas. E. coli strains from the OY area in particular, which has a high population density, showed strong resistance to AM10 and Va30. While strong antibiotic resistance was observed overall at the DP and OY locations, no resistance was observed at the EB location.

Biological Treatment of Processed-Leachate from Landfills by Reed (Phragmites australis)-Bed in a Continuous Flow System (갈대-상(床)을 이용한 쓰레기 매립지 침출수의 생물학적 연속흐름 처리)

  • Kim, In-Sung;Cho, Yong-Joo;Choi, Hong-Keun;Lee, Eun-Ju
    • The Korean Journal of Ecology
    • /
    • v.27 no.6 s.122
    • /
    • pp.375-381
    • /
    • 2004
  • We investigate the biological treatment of processed-leachate from SUDOKWON landfill site in Korea by the reed (Phragmites australis)-bed with a continuous flow system. The reed individuals showing superior growth in processed-leachate experiment were selected among the reeds of thirteen natural habitats by means of the comparisons between the removal rates of nutrient salts, eco-physiological responses and growth. The reed-beds (combination of the reed individuals showing superior growth with helper microorganisms) were continuously supplied with processed-leachate. We monitored the effluents that passing through the reed-beds during the experiment period. After five weeks, analysis results of effluent from each reed-bed were as follows; chromaticity, total nitrogen, total phosphorus, biological oxygen demand, chemical oxygen demand, total dissolved solid and salinity decreased $29.5{\sim}36.9\%,\;49.4{\sim}67.2\%,\;42.1{\sim}94.6\%,\;74.5{\sim}88.8\%,\;15.6{\sim}20.8\%,\;17.5{\sim}35.4\%\;and\;15.3{\sim}34.7\%$, respectively. These results represented the substantial improvement of water-quality after passing through reed-bed in a continuous flow system.

Characteristics on Seasonal Variation of Stream Water Quality on Upland Headwater Streams in Forested Catchments (산림유역의 계류수질 현황 및 계절적 변동 특성)

  • Nam, Sooyoun;Lim, Honggeun;Li, Qiwen;Choi, Hyung Tae;Yang, Hyunje;Kim, Jaehoon
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.5
    • /
    • pp.220-230
    • /
    • 2022
  • Seasonal variability of water quality in the upland headwater streams in ten forested catchments (37.0~209.0 ha) was examined from April to November 2021. Here, seven physicochemical parameters were analyzed including pH, electrical conductivity (EC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (T-N), total phosphorous (T-P), and BOD/TOC. The parameters were compared with those of lowerland rivers as middle and lower reaches within a watershed. The pH showed was low (6.4~6.9) during all the seasons, however, BOD and BOD/TOC in the fall season were 2-fold higher than in the spring and summer seasons. Based on environmental standards, the water quality level revealed that the upland headwater streams maintained the purity and cleanliness of water except for pH in the summer season. BOD/TOC of all the seasons and BOD of the fall season in the upland headwater streams were higher than that in the lowerland rivers, whereas the rest of the physicochemical parameters in the upland headwater streams were lower than that in the lowerland rivers. Additionally, the water quality level maintained the purity and cleanliness of water as "Good" in two reaches. The unique aspects of our study design enabled us to draw inferences about water quality characteristics with temporal and spatial analysis in upland headwater streams. This design will be useful for the long-term strategy of effective water quality management for integrated upland headwater streams and lowerland rivers within a watershed.

Development of Regression Models for Estimation of Unmeasured Dissolved Organic Carbon Concentrations in Mixed Land-use Watersheds (복합토지이용 유역의 수질 관리를 위한 미측정 용존유기탄소 농도 추정)

  • Min Kyeong Park;Jin a Beom;Minhyuk Jeung;Ji Yeon Jeong;Kwang Sik Yoon
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.2
    • /
    • pp.162-174
    • /
    • 2023
  • In order to prevent water pollution caused by organic matter, Total Organic Carbon(TOC) has been adopted indicator and monitored. TOC can be divided into Dissolved Organic Carbon(DOC) and Particulate Organic Carbon(POC). POC is largely precipitated and removed during stream flow, which making DOC environmentally significant. However, there are lack of studies to define spatio-temporal distributions of DOC in stream affected by various land use. Therefore, it is necessary to estimate the past DOC concentration using other water quality indicators to evaluate status of watershed management. In this study, DOC was estimated by correlation and regression analysis using three different organic matter indicators monitored in mixed land-use watersheds. The results of correlation analysis showed that DOC has the highest correlation with TOC. Based on the results of the correlation analysis, the single- and multiple-regression models were developed using Biochemical Oxygen Demand(BOD), Chemical Oxygen Demand(COD), and TOC. The results of the prediction accuracy for three different regression models showed that the single-regression model with TOC was better than those of the other multiple-regression models. The trend analysis using extended average concentration DOC data shows that DOC tends to decrease reflecting watershed management. This study could contribute to assessment and management of organic water pollution in mixed land-use watershed by suggesting methods for assessment of unmeasured DOC concentration.

The Study of Water Environment Variations in Lake Hwajinpo (화진포호의 수환경변화에 관한 연구)

  • Heo, Woo-Myung;Choi, Sang-Gyu;Kwak, Sung-Jin;Bhattrai, Bal Dev;Lee, Eun-Joo
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.9-21
    • /
    • 2011
  • This study is conducted to know the change in water environment of Lake Hwajinpo from 2000 to 2008 with physico-chemical parameters; salinity, dissolved oxygen, total phosphorus and total nitrogen and others. And zooplanktons and phytoplanktons were studied from 2007 to 2008. From the water quality data of Lake Hwajinpo from 2000 to 200S; water temperature, salinity, transparency, chemical oxygen demand and dissolved oxygen ranges are $2.8{\sim}29.4^{\circ}C$, 0.23~33.2‰, $0.2{\sim}1.8\;m$, $0.2{\sim}20.2\;mg\;L^{-1}$ and $0.1{\sim}17.4\;mg\;L^{-1}$ and the average values are $18.0^{\circ}C$, 15.7‰, 0.7 m, $5.7\;mg\;L^{-1}$ and $8.0\;mg\;L^{-1}$, respectively. Total phosphorus (TP) and total nitrogen (TN) ranges are $0.024{\sim}0.869\;mg\;L^{-1}$ (average 0.091) and $0.240{\sim}5.310\;mg\;L^{-1}$ (average 1.235). Average TN/TP ratio is 16.4. The annual variations in COD, TP, TN and Chl.${\alpha}$ are compared. COD in 2000 is $4.83\;mg\;L^{-1}$ and 2008 is $1.80\;mg\;L^{-1}$ which is reduced by $0.34\;mg\;L^{-1}$ every year. TP in 2000 is $0.07\;mg\;L^{-1}$ and 2008 is $0.05\;mg\;L^{-1}$ reduced gradually. Yearly reduction in TN is $0.09\;mg\;L^{-1}$, in 2000 and 2008 the values are $1.54\;mg\;L^{-1}$ and $0.77\;mg\;L^{-1}$ respectivly. Chl.${\alpha}$ in 2000 is $46.30\;{\mu}g\;L^{-1}$ and $5.78\;{\mu}g\;L^{-1}$ in 2008; yearly reduction is $4.50\;{\mu}g\;L^{-1}$. The tropic state index (TSI) in south and north parts of Lake Hwajinpo in 2000 are 67 and 63 which are reduced to 63 and 59 in 2008 respectively. North and south part of Lake Hwajinpo have 67 species of phytoplankton under 47 families in 2007 and 2008. Dominant species in south part in 2007 are; Asterococcus superbus in May, Lyngbya sp. in September and Trachelomonas spp. in November and in 2008 Anabaena spiroides in August are abundant and varies with time. Zooplankton species in Lake Hwajinpo are 25 of 25 families. Dominant species in south part in May and August 2007 and May and November in 2008 Copepoda larvae and in September 2007 Protozoa spp. of Protozoan and Brachionus plicatilis and Brachionus urceolaris of Cladocera in August 2008. Dominant species in north part Asplanchna sp. of Cladecera in August and November 2007 and rest of the time are larvae of Copepoda. In this way, the water quality of Lake Hwajinpo is changing with slow rate in the long period specially nutrients concentration (TP, TN etc) is decreasing.

The Study on the Amount and Major Compositions of Excreta from Swine (돼지의 분뇨 배설량 및 분뇨 성분 조사)

  • HwangBo, Jong;Hong, Eui-Chul;Park, Hee-Du;Kim, Dong-Woon;Cho, Sung-Back
    • Journal of Animal Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.319-328
    • /
    • 2010
  • This work was carried out to investigate the quantity of excreta and its composition in crossbred pigs (Yorkshire ${\times}$ Landrace ${\times}$ Duroc) at different stages of growth. Twelve young piglets (average BW weight of $19.0{\pm}0.33kg$) were used in this study. Pigs were divided into four phases during growing time and two phases during finishing time. The average excreta production for growing pig was 3.46 kg/head/day (feces: 1.07 kg, urine: 2.39 kg). The average moisture contents of feces and urine were 70.54% and 97.39%, respectively. Contents of Calcium, Magnesium, Copper, Plumbum, and Arsenic were 1.00%, 0.26%, 10.47 mg/kg, 2.43 mg/kg, and 1.02 mg/kg, respectively. The concentration of the water pollutants like Biochemical Oxygen Demand ($BOD_5$), Chemical Oxygen Demand (COD), Suspended Solid (SS), Total Nitrogen (TN) and Total Phosphorus (TP), excreted from pig were 96335, 61073, 207466, 8104 and 4209 mg/L in feces and 7364, 7149, 2715, 10110 and 613 mg/L in urine at the end of test, respectively. The daily loading amount of water pollutants ($BOD_5$, COD, SS, TN, and TP, respectively) in pig excreta were 102.1, 61.8, 221.6, 8.7, and 3.9 g/head/day in feces, and 19.3, 16.7, 8.0, 22.2, and 1.3 g/head/day in urine, respectively. The Nitrogen, $P_2O_5$, and $K_2O$ contents in the excreta of pigs were 0.96, 0.83 and 0.42% in feces, and 0.80, 0.09 and 0.53% in urine, respectively. Finally, this work was suggested to give basic information to swine farms.

Fish Community Characteristics in Hwapocheon Wetland, Korea (화포천 습지의 어류군집 특성)

  • Ko, Myeong-Hun;Choi, Kwang-Seek;Lim, Jeong-Cheol
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.2
    • /
    • pp.165-176
    • /
    • 2022
  • This study surveyed the characteristics of fish communities in Hwapocheon Wetland, Korea, from May to September 2020. The survey collected 735 objects in 21 species belonging to 7 families from 8 survey stations. The dominant and subdominant species were Hemiculter eigenmanni(23.8%) and Micropterus salmoides(10.3%), respectively. The next most abundant species were Zacco platypus(9.5%), Carassius auratus(9.4%), Pseudorasbora parva(9.0%), Squalidus chankaensis tsuchigae(6.7%), Acheilognathus macropterus(5.4%), Lepomis macrochirus(5.2%), Pseudogobio esocinus(4.1%), Opsariichthys uncirostris amurensis(3.7%), and Carassius cuvieri(3.3%). Among the fish species collected, one species, Culter brevicauda, was class II endangered wildlife designated by the Ministry of Environment, and one species,S. c. tsuchigae(4.8%), was endemic to Korea.Additionally, three exotic species (M. salmoides, L. macrochirus, and C. cuvieri) and one landlocked species (Rhinogobius brunneus) were collected. Compared to previous studies, the proportion of fish living in the running water area tended to decrease, the proportion of fish living in the water purification area tended to increase, and ecosystem-disturbing species (M. salmoides and L. macrochirus) tended to increase gradually. Results of fish community analysis showed that the mainstream stations (St. 1, 3, 4, 5, 6, and 8) had low dominance, but high diversity and richness, and other stations (St. 2 and 7) had high dominance but low diversity and richness. The river health (index of biological integrity) evaluated using fish was assessed as bad (6 stations), normal (1 station), and very bad (1 station). The water quality grade was assessed as slightly bad due to the chemical oxygen demand (COD), total organic content (TOC), suspended solid (SS), and total coliforms (TC). The annual water quality showed a gradually increasing trend of biological oxygen demand (BOD), COD, SS, and chlorophyll-a. The stable life of fish and the improvement of river health in Hwapocheon Wetland require water quality improvement and the systematic management of ecosystem-disturbing species (M. salmoidesand L. macrochirus).

A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for in situ Reclamation of Water and Sediment in Brackish Aquaculture Ponds: Effects of Operational Conditions on Performance

  • Pham, Hai The;Vu, Phuong Ha;Nguyen, Thuy Thu Thi;Bui, Ha Viet Thi;Tran, Huyen Thanh Thi;Tran, Hanh My;Nguyen, Huy Quang;Kim, Byung Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1607-1623
    • /
    • 2019
  • Sediment bioelectrochemical systems (SBESs) can be integrated into brackish aquaculture ponds for in-situ bioremediation of the pond water and sediment. Such an in-situ system offers advantages including reduced treatment cost, reusability and simple handling. In order to realize such an application potential of the SBES, in this laboratory-scale study we investigated the effect of several controllable and uncontrollable operational factors on the in-situ bioremediation performance of a tank model of a brackish aquaculture pond, into which a SBES was integrated, in comparison with a natural degradation control model. The performance was evaluated in terms of electricity generation by the SBES, Chemical oxygen demand (COD) removal and nitrogen removal of both the tank water and the tank sediment. Real-life conditions of the operational parameters were also experimented to understand the most close-to-practice responses of the system to their changes. Predictable effects of controllable parameters including external resistance and electrode spacing, similar to those reported previously for the BESs, were shown by the results but exceptions were observed. Accordingly, while increasing the electrode spacing reduced the current densities but generally improved COD and nitrogen removal, increasing the external resistance could result in decreased COD removal but also increased nitrogen removal and decreased current densities. However, maximum electricity generation and COD removal efficiency difference of the SBES (versus the control) could be reached with an external resistance of $100{\Omega}$, not with the lowest one of $10{\Omega}$. The effects of uncontrollable parameters such as ambient temperature, salinity and pH of the pond (tank) water were rather unpredictable. Temperatures higher than $35^{\circ}C$ seemed to have more accelaration effect on natural degradation than on bioelectrochemical processes. Changing salinity seriously changed the electricity generation but did not clearly affect the bioremediation performance of the SBES, although at 2.5% salinity the SBES displayed a significantly more efficient removal of nitrogen in the water, compared to the control. Variation of pH to practically extreme levels (5.5 and 8.8) led to increased electricity generations but poorer performances of the SBES (vs. the control) in removing COD and nitrogen. Altogether, the results suggest some distinct responses of the SBES under brackish conditions and imply that COD removal and nitrogen removal in the system are not completely linked to bioelectrochemical processes but electrochemically enriched bacteria can still perform non-bioelectrochemical COD and nitrogen removals more efficiently than natural ones. The results confirm the application potential of the SBES in brackish aquaculture bioremediation and help propose efficient practices to warrant the success of such application in real-life scenarios.

The Use of Oyster Shell Powders for Water Quality Improvement of Lakes by Algal Blooms Removal

  • Huh, Jae-Hoon;Choi, Young-Hoon;Lee, Hyun-Jae;Choi, Woo Jeong;Ramakrishna, Chilakala;Lee, Hyoung-Woo;Lee, Shin-Haeng;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In this year, Koreans have a shortage in agricultural and drinking water due to severe algal blooms generated in major lakes. Waste oyster shells were obtained from temporary storage near the workplace at which oysters were separated from their shells. Heating ($1000^{\circ}C$ for 1 h in air) was employed to convert raw oyster shell powders into calcium oxide powders that reacted efficiently with phosphorus and nitrogen to remove algal blooms from eutrophicated wastewater. As the dispersed amount of heated oyster shell powders was increased, water clarity and visual light penetration were improved. Coagulation, precipitation and carbonation process of the heated oyster shell powders in a water purifier facilitated removal of eutrophication nutrient such as phosphorus and nitrogen, which is both beneficial and economically viable. $CO_2$ implantation by carbonation treatment not only produced thermodynamically stable CaO in oyster shells to derive precipitated calcium carbonate (PCC) but also accelerated algal removal by activation of coagulation and precipitation process. The use of oyster shell powders led to a mean reduction of 97% in total phosphate (T-P), a mean reduction of 91% in total nitrogen (T-N) and a maximum reduction of 51% in chemical oxygen demand (COD), compared with the total pollutant load of raw algal solution. Remarkable water quality improvement of algal removal by heated oyster shell powders and PCC carbonation treatment will allow utilization as water resources to agricultural or industrial use.

A Study on the Epilithic Algae in a stream drained from Hot Springs (온천 주변 소형하천에 서식하는 부착조류군집에 관한 연구)

  • 최환석;유춘만
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.131-136
    • /
    • 1998
  • Attached algal community and several physico-chemicai characters were investigated at Seokjong hot spring in Chollabukdo in February and in April, 1997. The results of physico-chemicai factors are as follows : water temperatures were varied from 6.5$^{\circ}$C to 32.0$^{\circ}$C; pH range was 6.9 to 7.7; The levels of electric conductivity were 105 $\mu$mhos/cm to 477 $\mu$mhos/cm; chemical oxygen demand(COD) range was 1.5 mg/l to 21.2 mg/l; ammonia concentration was 0.20 mg/l to 8.74 mg/l; nitrate concentrations were 0.36 mg/l to 2.43 mg/l; phosphate concentration was N.D. to 0.52 mg/l; sulfur concentration was 14.6 mg/l to 66.1 mg/l. Attacched algal species were identified. Totally, 63 taxa were classified and composed of 4 phylum, 4 class, 10 order, 17 family and 31 genera. The total biomass of attacched algae was $1.036 \times 10^{7}$ cells/l that composed of $5.39 \times 10^{6}$ cells/l of blue-green algae, $4.05 \times 10^{6}$ cells/l of diatom and $0.93 \times 10^{6}$ cells/l of green algae. The succession of dominant species was Synechocystis thermalis. This could be due to the thermal wastewaters. in biotic indices tests, the values of dominance index(DI) were 0.33 to 0.67 in winter, 0.18 to 0.68 in spring. The values of diversity index(H') were 1.44 to 2.69 in winter, 1.62 to 2.89 in spring. And the values of eveness index (J) were 0.31 to 0.61 in winter, 0.37 to 0.65 in spring.

  • PDF