• Title/Summary/Keyword: CO2 reduction

Search Result 2,918, Processing Time 0.035 seconds

Microstructure and Magnetic Properties of Nanostructured Fe-Co Alloy Powders Produced by Chemical Solution Mixing and Hydrogen Reduction Methods (화학용액혼합과 수소환원법으로 제조된 나노 구조 Fe-Co 합금분말의 미세구조 및 자성 특성)

  • 박현우;이백희;이규환;김영도
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.333-336
    • /
    • 2003
  • The purpose of this study is the fabrication of nano-sized Fe-Co alloy powders with soft magnetic properties by the slurry mixing and hydrogen reduction (SMHR) process. $FeCl_2$0 and $CoCl_2$ powders with 99.9% purities were used for synthesizing nanostructured Fe-Co alloy powder. Nano-sized Fe-Co alloy powders were successfully fabricated using SMHR, which was performed at 50$0^{\circ}C$ for 1 h in H$_2$ atmosphere. The fabricated Fe-Co alloy powders showed $\alpha$' phase (ordered body centered cubic) with the average particle size of 45 nm. The SMHR powder exhibited low coercivity force of 32.5 Oe and saturation magnetization of 214 emu/g.

A Calculation of CO2 Reduction from International Virtual Video-conference (온라인 국제 화상회의 개최에 의한 CO2 저감량 산출)

  • Rhee, Jong-Myung;Lim, Dong-Seok;Lee, Young-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.4
    • /
    • pp.81-87
    • /
    • 2009
  • In this paper, the reduction amount of CO2 due to the virtual international video-conference organized by ITU in order to reduce the greenhouse gas (GHG) is calculated. The comparison is made with the case of off-line conference. In the symposium organized by ITU, "The power of ICTs to save The planet", held on September 2009 the participants were highly encouraged to attend the symposium through video-conferencing for the reduction of GHG. As a result, 46 foreign participants and 16 among 170 domestic participants have attended at virtual video-conference, which resulted in about 94.7 ton of CO2 emission reduction. This international symposium firstly tried in conjunction with online and off-line has drawn a big attention in the aspect of global warming. Definitely such ITU's trial will make significant impacts on the holding of other international symposiums and forums.

  • PDF

Chemical Solution Mixing and Hydrogen Reduction Method for Fabrication of Nanostructured Fe-Co Alloy Powders (화학용액 혼합과 수소환원법을 이용한 나노구조 Fe-Co 합금분말의 제조)

  • 박광현;박현우;이백희;장시영;이정근;김영도
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.137-142
    • /
    • 2004
  • In this study, chemical solution mixing and hydrogen reduction method was used to fabricate nanostructured $Fe_xCo_{1-x}$ alloy powders. Fe-Co chloride mixture, FeCl$_2$ and COCI$_2$ with 99.9% purity, were reduced in hydrogen atmosphere. Nanostructured Fe-Co alloy powders with a grain size of 50 nm were successfully fabricated. Magnetic properties of fabricated $Fe_xCo_{1-x}$(x=0, 10, 30, 50, 70, 100) alloy powders with the same grain size were measured because size factor can affect magnetic properties. Coercivity of Fe-Co alloy powders were increased with increasing Co contents. Maximum value of coercivity in various Co contented Fe-Co alloy powders with similar grain size was 125 Oe at Fe$_{100}$. Saturation magnetization value at Fe$_{70}$Co$_{30}$ composition showed maximum value of 219 emu/g and saturation magnetization value decreased with increasing Co contents and minimum value of 155 emu/g was observed at Co$_{100}$.

A Study on the Carbon Taxation Method Using the Real Business Cycle Model (실물적 경기변동모형을 이용한 탄소세 부과방식에 관한 연구)

  • Chung, In-sup;Jung, Yong-gook
    • Environmental and Resource Economics Review
    • /
    • v.27 no.1
    • /
    • pp.67-104
    • /
    • 2018
  • In this paper, we compare the spread effects of the carbon tax imposition method using the real business cycle model considering the productivity and energy price shocks. Scenario 1 sets the carbon tax rate that encourages the representative firm to maintain a constant $CO_2$ reduction ratio in accordance with its green house gas reduction targets for each period. Scenario 2 sets the method of imposing the steady state value of the carbon tax rate of Scenario 1 during the analysis period. The impulse response analysis shows that the responses of $CO_2$ emissions to external shocks are relatively sensitive in scenario 2. And simulation results show that the cost of $CO_2$ abatement is more volatile in scenario 1, and $CO_2$ emissions and $CO_2$ stock are more volatile in scenario 2. In particular, the percentage changes in volatility between the two scenarios of $CO_2$ emissions and $CO_2$ stock increase as the green house gas reduction target is harder. When the green house gas reduction target is 60% and over, the percentage changes(absolute value) between the two scenarios exceed the percentage change(absolute value) of the $CO_2$ reduction cost between them.

The Experimental Study on Mixing and Quality Properties of Quaternary Component Blended High Fluidity Concrete with CO2 Reduction (탄소저감형 4성분계 고유동 콘크리트의 배합 및 품질 특성에 관한 실험적연구)

  • Jo, Jun-Hee;Kim, Yong-Jic;Oh, Sung-Rok;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.268-276
    • /
    • 2015
  • In this study, $CO_2$ reduction type quaternary component high fluidity concrete was produced with more than 80% reduction in cement quantity to increase the use of industrial byproducts and enhance construction performance, thereby reducing $CO_2$ emissions. Furthermore, the quality properties, and $CO_2$ reduction performance of this concrete were evaluated. As a result of the quality evaluation of quaternary component blended high fluidity concrete with $CO_2$ reduction, the target performance could be achieved with a 80% or more reduction of cement quantity by mixing a large amount of industrial byproducts. The required performance level was obtained even though the flow, dynamic, and durability characteristics decreased a little compared to conventional mix. In addition, to analyze the $CO_2$ reduction performance of quaternary component blended high fluidity concrete with $CO_2$ reduction, the life cycle assessment (LCA) of the concrete was performed and the results showed that compared to the conventional mix, the carbon emissions decreased by 62.2% and the manufacturing cost by 24.5%.

Application of LEAP Model to Reduce GHG Emissions from Residential Sector (LEAP 모형을 이용한 가정 부문 온실가스 저감효과 분석)

  • Jo, Mi-hyun;Park, Nyun-Bae;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.211-219
    • /
    • 2013
  • This study uses the LEAP model that is a long-term energy analysis model to analyze reduction potential on S city residential sector energy usage for greenhouse gas emission. Energy consumption of S-si in 2009 is consumed most in residential and commerce sector by 39.1%. Also, energy and greenhouse gas emission of residential sector is expected to increase due to increase of households. Therefore, greenhouse gas reduction measures are desperately required in residential sector. For this study recognizes energy consumption of S-si residential sector and has established reduction measure of S-si residential sector greenhouse gas through literature search on domestic and foreign climate change correspondence policies. Also, construction of greenhouse gas reduction potential by reduction measures through LEAP model. There were a total of 5 reduction measures scenarios is Reference Scenario, LED Lighting, Energy Alternative, Green Life Practice, and Total Reduction Measure. As a result, greenhouse gas emission of Light Emitting Diode Lightings by 2020 was $1,181.0thousand\;tonCO_2eq$, decrease of 6.1% compared to the Reference Scenario and Greenhouse gas emission of Energy Alternative by 2020 was $1,171.6thousand\;tonCO_2eq$, decrease of 6.8% compared to the Reference Scenario. Greenhouse gas emission of Green Life Practice by 2020 was $1,128.7thousand\;tonCO_2eq$, decrease of 10.2% compared to the Reference Scenario. For Total Reduction Measures by 2020 emission was $966.9thousand\;tonCO_2eq$, decrease 23.1% compared to Reference Scenario.

CFD APLICATIONS FOR THE $CO_2$ OCEAN SEQUESTRATION ($CO_2$ 해양격리를 위한 CFD의 응용연구)

  • Jung, R.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.196-201
    • /
    • 2009
  • Global warming issues due to the $CO_2$(Carbon Dioxide) become increasing since the Industrial Revolution. After the Kyoto protocol at 1997, nations which have the prearranged quota drives their national project for the reduction of $CO_2$. Korean Government start to the related big projects in the view of three concepts which have consist of the $CO_2$ exhaust reduction on land, $CO_2$ capture and $CO_2$ storage. Furthermore, the storage method putting into depleted region underground is accepted by the London Convention while the ocean diluted method discharging the liquid $CO_2$ into the deep ocean using the long pipe which is towed by the surface vessel is underway for the research steps which means that there are many potentials for the R&Ds that need for the breakthrough. In this paper, the role and example of the Computational Fluid Dynamics for the feasibility study of the $CO_2$ ocean sequestration is mentioned.

  • PDF

Estimating CO2 Emission Reduction of Non-capture CO2 Utilization (NCCU) Technology (NCCU(Non-Capture CO2 Utilization) 기술의 CO2 감축 잠재량 산정)

  • Lee, Ji Hyun;Lee, Dong Woog;Gyu, Jang Se;Kwak, No-Sang;Lee, In Young;Jang, Kyung Ryoung;Choi, Jong-shin;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.590-596
    • /
    • 2015
  • Estimating potential of $CO_2$ emission reduction of non-capture $CO_2$ utilization (NCCU) technology was evaluated. NCCU is sodium bicarbonate production technology through the carbonation reaction of $CO_2$ contained in the flue gas. For the estimating the $CO_2$ emission reduction, process simulation using process simulator (PRO/II) based on a chemical plant which could handle $CO_2$ of 100 tons per day was performed, Also for the estimation of the indirect $CO_2$ reduction, the solvay process which is a conventional technology for the production of sodium carbonate/sodium bicarbonate, was studied. The results of the analysis showed that in case of the solvay process, overall $CO_2$ emission was estimated as 48,862 ton per year based on the energy consumption for the production of $NaHCO_3$ ($7.4GJ/tNaHCO_3$). While for the NCCU technology, the direct $CO_2$ reduction through the $CO_2$ carbonation was estimated as 36,500 ton per year and the indirect $CO_2$ reduction through the lower energy consumption was 46,885 ton per year which lead to 83,385 ton per year in total. From these results, it could be concluded that sodium bicarbonate production technology through the carbonation reaction of $CO_2$ contained in the flue was energy efficient and could be one of the promising technology for the low $CO_2$ emission technology.

A sutdy on the District Unit Design for CO2 Reduction of Transportation (교통부문 CO2 저감을 위한 지구단위설계 방법에 관한 연구)

  • Jin, Jang-Won;Park, Min-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1370-1376
    • /
    • 2012
  • This study tried to analyze $CO_2$ emission volume as green-house gases by application of land use patterns and transport policies in District Unit Design. It is postulated a Toy network and various scenarios which are combined land use patterns and transport policies for analyzing $CO_2$ gas reduction. As results, this study shows best District Unit Design technique is the policy that develop mid block and introduction of car free zone to inner 2 way streets. Worst design technique is the policy that make hierarchical network and introduction of access control to outer roads that have been known as a best road policy till nowadays. Therefore, we need more carefully introduce design technique for reduction of $CO_2$ in District Unit.

Method for Improvement of Reduction Reactivity at High Temperature in a Chemical-Looping Combustor (매체순환식 가스연소기에서 고온 환원반응성 증대 방법)

  • Ryu, Ho-Jung;Park, Sang-Soo;Lee, Dong-Ho;Choi, Won-Kil;Rhee, Young-Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.843-849
    • /
    • 2012
  • When we use NiO based particle as an oxygen carrier in a chemical looping combustion system, the fuel conversion and the $CO_2$ selectivity decreased with increasing reaction temperature within high temperature range (> $900^{\circ}C$) due to the increment of exhaust CO concentration from reduction reactor. To improve reduction reactivity at high temperature, the applicable metal oxide component was selected by calculation of the equilibrium CO concentration of metal oxide components. After that, feasibility of reduction reactivity improvement at high temperature was checked by using solid mixture of the selected metal oxide particle and NiO based oxygen carrier. The reactivity was measured and investigated using batch type fluidized bed. The solid mixture of $Co_3O_4/CoAl_2O_4$(10%) and OCN706-1100(90%) showed higher fuel conversion, higher $CO_2$ selectivity and lower CO concentration than OCN706-1100(100%) cases. Consequently, we could conclude that improvement of reduction reactivity at high temperature range by adding some $Co_3O_4$ based oxygen carrier was feasible.