• Title/Summary/Keyword: CO II gene

Search Result 96, Processing Time 0.025 seconds

Cloning and Sequencing of the Mitochondrial Cytochrome c Oxidase Subunit II Gene from Rhabditidae Family Nematode (Rhabditidae과 선충의 CO II 유전자 클로닝 및 염기서열 분석)

  • Lee, Sang Mong;Son, Hong Joo;Kim, Keun Ki;Hong, Chang Oh;Park, Hyean Cheal
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.75-84
    • /
    • 2019
  • Cytochrome c oxidase subunit II gene(CO II gene) is subunit of cytochrome oxidase, which is complex IV of mitochondria electron transport system. It has been frequently used in molecular phylogenetic studies because the speed of its DNA variation is faster than that of nucleus. It is especially useful in phylogenetic study of molecular biology in insects. In this study, we cloned and sequenced CO II gene of mitochondria DNA from Rhabditidae family nematode. Our results showed that this gene is comprised of 696 base pairs(bp). In the analysis of similarity of this gene with other known genes of 14 species of nematodes in Rhabditida order, we identified that this gene has high similarity with that of Caenorhabditis briggsae(86.0%) and C. elegans(85.6%) in Rhabditidae family. On the meanwhile, it has very low similarity with that of Angiostrongylus cantonensis(31.8%) in Angiostrongylidae family and Metastrongylus salmi(31.6%) in Metastrongylidae family. Based on the results of this study, we suggest that this nematode is closely related with that of Caenorhabditis genus in Rhabditidae family.

Cloning, Sequencing, and Characterization of the Pradimicin Biosynthetic Gene Cluster of Actinomadura hibisca P157-2

  • Kim, Byung-Chul;Lee, Jung-Min;Ahn, Jong-Seog;Kim, Beom-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.830-839
    • /
    • 2007
  • Pradimicins are potent antifungal antibiotics having an unusual dihydrobenzo[$\alpha$]naphthacenequinone aglycone substituted with D-alanine and sugars. Pradimicins are polyketide antibiotics produced by Actinomadura hibisca P157-2. The gene cluster involved in the biosynthesis of pradimicins was cloned and sequenced. The pradimicin gene cluster was localized to a 39-kb DNA segment and its involvement in the biosynthesis of pradimicin was proven by gene inactivation of prmA and prmB(ketosynthases $\alpha\;and\;\beta$). The pradimicin gene cluster consists of 28 open reading frames(ORFs), encoding a type II polyketide synthase(PKS), the enzymes involved in sugar biosynthesis and tailoring enzymes as well as two resistance proteins. The deduced proteins showed strong similarities to the previously validated gene clusters of angucyclic polyketides such as rubromycin, griseorhodin, and fredericamycin. From the pradimicin gene cluster, prmP3 encoding a component of the acetyl-CoA carboxylase complex was disrupted. The production levels of pradimicins of the resulting mutants decreased to 62% of the level produced by the wild-type strain, which indicate that the acetyl-CoA carboxylase gene would have a significant role in the production of pradimicins through supplying the extender unit precursor, malonyl-CoA.

CAPS Marker Linked to Tomato Hypocotyl Pigmentation

  • Kim, Hyoun-Joung;Lee, Heung-Ryul;Hyun, Ji-Young;Won, Dong-Chan;Hong, Dong-Oh;Harn, Chee-Hark
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.56-63
    • /
    • 2012
  • Tomato hypocotyl can generally be one of two colors, purple or green. Genetically, this trait is controlled by a single dominant gene. Hypocotyl tissue specific color expression is one of many visible genetic marker sources used to select tomato progeny. However, the visible marker does not show a clear distinction between homozygous genotype and heterozygous genotype from the breeding lines. Therefore, to identify a hypocotyl pigmentation related marker, we screened DNA polymorphisms in thirteen tomato lines showing purple or green hypocotyls. The markers used for screening consisted of primer set information obtained from anthocyanin related genes, conserved ortholog set II (COS II) marker sets localized near anthocyanin related genes, and restriction fragment length polymorphism (RFLP) markers localized near COS II markers, which produce polymorphisms between purple and green tomatoes. One primer from a RFLP fragment resulted in a polymorphism on agarose gel electrophoresis. From the RFLP fragment, a cleaved amplified polymorphic sequence (CAPS) marker was developed to distinguish between purple and green hypocotyls. The genotypes of 135 $F_2$ individuals were analyzed using the CAPS marker, and among them, 132 individuals corresponded to the phenotypes of hypocotyl pigmentation.

Development of New Molecular Markers for the Identification of Male Sterile Cytoplasm in Peppers (Capsicum annuum L.)

  • Min, Woong-Ki;Kim, Byung-Dong;Kim, Sung-Gil;Lee, Sang-Hyeob
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.53-60
    • /
    • 2011
  • Cytoplasmic male sterility (CMS) induced by mutant mitochondria genome, has been used for commercial seed production of $F_1$ hybrid cultivars in diverse crops. In pepper (Capsicum annuum L.), two sterile cytoplasm specific gene organization, atp6-2 and coxII were identified. An open reading frame, orf456 nearby coxII gene has been speculated to induce male sterility (MS) by mutagenic analysis. Moreover, molecular markers for atp6-2 and coxII of mitochondrial genotype (mitotype) were developed. However, the Cytoplasmic MS specific markers, atp6SCAR and coxIISCAR markers appeared in both N and S cytoplasms when polymerase chain reaction (PCR) cycles prolonged more than 40 cycles. Since the reported molecular markers were dominant markers, the presence of the faint sterile-specific band in normal cytoplasm may lead to the mis-classification of pepper breeding lines. To solve this problem, one common forward primer and two different reverse primers specific to normal coxII and sterile orf456 genes were designed after analyzing their gene organizations. By using these three primers, N and S coxII specific bands were co-amplified in male-sterile lines, but only normal coxII specific band was amplified in maintainer lines. Since the reverse primer for sterile coxII was specifically designed 275 bp downstream of orf456, relatively stable PCR amplification patterns were observed regardless of the number of PCR cycles. These primer sets easily identified different mitotypes among the divergent breeding lines, commercial cultivars and diverse germplasms.

Two Genetic Polymorphisms of the Human Lipoprotein Lipase Gene in Korean Patients with Essential Hypertension

  • Kang, Byung-Yong;Lee, Kang-Oh;Kim, Ki-Tae;Bae, Joon-Seol;Ryu, Jae-Chun;Kim, Jae-Hyoun;Lim, Seok-Rhin;Lee, Chung-Choo
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.1
    • /
    • pp.22-29
    • /
    • 2002
  • Essential hypertension is considered to be caused by a complicated combination of genetic and environmental factors. Alterations of lipid metabolism in plasma have been reported to be related to an increased risk of essential hypertension. The purpose of this study was to investigate the relationship between two genetic polymorphisms (Pvu II and Hind III RELPs) of the human lipoprotein lipase (LPL) gene and essential hypertension in korean population. In our result the Pvu II RFLP of LPL gene was significantly associated with essential hypertension (P < 0.05). Therefore, we suggest that the Pvu II RFLP of LPL gene may be useful as a genetic marker for essential hypertension in Korean population.

  • PDF

Mutation Spectrum of Manganese (II) Peroxidase Gene in the Pleurotus ostreatus Mutants Induced by Gamma Radiation

  • Chang, Hwa-Hyoung;Lee, Young-Keun;Kim, Jae-Sung;Lee, Ki-Sung;Cho, Kyu-Seong
    • Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.52-57
    • /
    • 2003
  • The mutational spectra in the manganese (II) peroxidase gene (mnp) of the Pleurotus ostreatus mutants induced by gamma radiation (Co$\^$60/) give evidence to prove the effect of gamma radiation on the gene. mnp of each mutant was cloned, sequenced and analyzed. Among the 1941 base pairs of the sequenced region of the mnP genes of 4 mutants (PO-5,-6,-15 and -16), nine mutational hotspots on which the same base was mutated simultaneously were found, additionally 6 mutations were also found at different positions in the mnp gene. These mutation-spectra were predominantly A:T\longrightarrowG:C transitions (50.1%). By the analysis of putative amino acid sequences, PO-5 and PO-16 mutants have 3 and 1 mutated residues, respectively. Since the mutational spectra reported herein are specific to the mnp gene, we propose that the mutational hotspots for the gamma radiation could be in the gene(5) within cells.

Single Somatic Embryogenesis from Transformant with Proteinase II Gene in Panax ginseng C.A. Meyer

  • Yang, Deok-Chun;Kim, Se-Young;Rho, Yeong-Deok;Kim, Moo-Sung
    • Plant Resources
    • /
    • v.6 no.3
    • /
    • pp.205-210
    • /
    • 2003
  • Ginseng(Panax ginseng C.A. Meyer) is a perennial herbaceous plant which grows very slowly. It takes about 3 to 4 years from seeding to collecting the ripe seeds and the ginseng propagation is very difficult. and so, it is very difficult to breed ginseng plant. Ginseng tissue culture was started from at 1960, and ginseng commercial product by in vitro callus culture was saled, however upto now, regenerants were not planted to soil normally. Recently, plant genetic engineering to produce transgenic plants by introducing useful genes has been advanced greatly. In a present paper, transformation of ginseng plants was achieved by co-cultivation with Agrobacterium harboring the binary vector coding Proteinase-II gene, which confer resistant or tolerant to insect pests, The binary vector for transformation was constructed with disarmed Ti-plasmid and with double 35S promoter. The NPT II gene and introduced genes of the transgenic ginseng plants were successfully identified by the PCR. Especially the transgenic ginseng plants were regenerated using new techniques such as repetitive single somatic embryogenesis.

  • PDF

Cloning, Nucleotide Sequencing, and Characterization of the ptsG Gene Encoding Glucose-Specific Enzyme II of the Phosphotransferase System from Brevibacterium lactofermentum

  • Yoon, Ki-Hong;Lee, Kyu-Nam;Lee, Jung-Kee;Park, Se-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.582-588
    • /
    • 1999
  • A Brevibacterium lactofermentum gene coding for a glucose-specific permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned, by complementing an Escherichia coli mutation affecting a ptsG gene with the B. lactofermentum genomic library, and completely sequenced. The gene was identified as a ptsG, which enables an E. coli transformant to transport non-metabolizable glucose analogue 2-deoxyglucose (2DG). The ptsG gene of B. lactofermentum consists of an open reading frame of 2,025 nucleotides encoding a polypeptide of 674 amino acid residues and a TAA stop codon. The 3' flanking region contains two stem-loop structures which may be involved in transcriptional termination. The deduced amino acid sequence of the B. lactofermentum enzyme $II^{GIe}$ specific to glucose ($EII^{GIe}$) has a high homology with the Corynebacterium glutamicum enzyme $II^{Man}$ specific to glucose and mannose ($EII^{Man}$), and the Brevibacterium ammoniagenes enzyme $II^{GIc}$ specific to glucose ($EII^{GIc}$). The 171-amino-acid C-terminal sequence of the $EII^{Glc}$ is also similar to the Escherichia coli enzyme $IIA^{GIc}$ specific to glucose ($IIA^{GIc}$). It is interesting that the arrangement of the structural domains, IIBCA, of the B. lactofermentum $EII^{GIc}$ protein is identical to that of EIIs specific to sucrose or $\beta$-glucoside. Several in vivo complementation studies indicated that the B. lactofermentum $EII^{Glc}$ protein could replace both $EII^{ Glc}$ and $EIIA^{Glc}$ in an E. coli ptsG mutant or crr mutant, respectively.

  • PDF

Genetic Variations in Six Candidate Genes for Insulin Resistance in Korean Essential Hypertensives

  • Bae, Joon-Seol;Kang, Byung-Yong;Kim, Ki-Tae;Shin, Jung-Hee;Lee, Chung-Choo
    • Animal cells and systems
    • /
    • v.5 no.4
    • /
    • pp.341-346
    • /
    • 2001
  • Hypertension is a complex disease with strong genetic influences. Essential hypertension has been shown to be associated with insulin resistance. To clarify the genetic basis of insulin resistance in Hypertension, case-control association studies were performed to examine candidate genes for insulin resistance in hypertension. Polymorphisms investigated were the BstO I polymorphism of the $\beta$3-adrenergic receptor (ADRB3) gene, the Xba I Polymorphism of the glycogen synthase (GSY) gene, the Dde I polymorphism of the protein phosphatase 1 G subuit (PP1G) gene, the BstE II polymorphism of the glucagon receptor (GCG-R) gene, the Pst 1 polymorphism of the insulin (INS) gene and the Acc I polymorphism of the glucokinase (GCK) gene. No significant differences were observed in the distribution of alleles and genotypes of the ADRB3, GSY PP1G, GCG-R, INS, and GCK genes between hypertensive and normotensive groups. Although the frequencies in each of these polymorphisms were not significantly different between essential hypertensive and normotensive individuals, our results may provide additional information for linkage analysis and associative studies of disorders in carbohydrate metabolism or in cardiovascular disease.

  • PDF