• 제목/요약/키워드: CO Detection

검색결과 1,829건 처리시간 0.033초

UAV를 활용한 미사일접근경보 장비의 탐지거리 시험결과 고찰 (Consideration of Detection Range Test Results of Missile Approach Warning Equipment using UAV)

  • 이병헌;권재언;김영일;이성일;이청;허장욱
    • 한국군사과학기술학회지
    • /
    • 제27권2호
    • /
    • pp.213-221
    • /
    • 2024
  • Aircraft's operational effectiveness is reduced due to threats from enemy anti-aircraft weapons, which is a weak point. In particular, guided missiles, which pose a threat to aircraft, are rapidly developing due to technological advancements in seekers, and are classified as one of the important technologies in weapon systems. Missile approach warning equipment installed to ensure aircraft survivability detects guided missiles and provides relevant information to respond. Tests were conducted domestically to verify the detection level of missile approach warning equipment, and test results were presented under various test conditions.

Comparison of clinical diagnostic performance between commercial RRT-LAMP and RT-qPCR assays for SARS-CoV-2 detection

  • Kim, Hye-Ryung;Park, Jonghyun;Han, Hyung-Soo;Kim, Yu-Kyung;Jeon, Hyo-Sung;Park, Seung-Chun;Park, Choi-Kyu
    • 한국동물위생학회지
    • /
    • 제44권3호
    • /
    • pp.163-168
    • /
    • 2021
  • The rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in isolating infected patients and preventing further viral transmission. In this study, we evaluated the clinical diagnostic performances of a commercial real-time reverse transcription loop-mediated isothermal amplification (RRT-LAMP) assay (Isopollo® COVID-2 assay, M-monitor, Daegu, Korea) using eighty COVID-19 suspected clinical samples and compared these with the results of a commercial real-time reverse transcription polymerase chain reaction (RT-qPCR) assay (AllplexTM 2019-nCoV rRT-QPCR Assay, SeeGene, Seoul, Korea). The results of the RRT-LAMP assay targeting the N or RdRp gene of SARS-CoV-2 showed perfect agreement with the RT-qPCR assay results in terms of detection. Furthermore, the RRT-LAMP assay was completed in just within a 20-min reaction time, which is significantly faster than about the 2 h currently required for the RT-qPCR assay, thus enabling prompt decision making regarding the isolation of infected patients. The RRT-LAMP assay will be a valuable tool for rapid, sensitive, and specific detection of SARS-CoV-2 in human or unexpected animal clinical cases.

Development of an efficient method of radiation characteristic analysis using a portable simultaneous measurement system for neutron and gamma-ray

  • Jin, Dong-Sik;Hong, Yong-Ho;Kim, Hui-Gyeong;Kwak, Sang-Soo;Lee, Jae-Geun;Jung, Young-Suk
    • 분석과학
    • /
    • 제35권2호
    • /
    • pp.69-81
    • /
    • 2022
  • The method of measuring and classifying the energy category of neutrons directly using raw data acquired through a CZT detector is not satisfactory, in terms of accuracy and efficiency, because of its poor energy resolution and low measurement efficiency. Moreover, this method of measuring and analyzing the characteristics of low-energy or low-activity gamma-ray sources might be not accurate and efficient in the case of neutrons because of various factors, such as the noise of the CZT detector itself and the influence of environmental radiation. We have therefore developed an efficient method of analyzing radiation characteristics using a neutron and gamma-ray analysis algorithm for the rapid and clear identification of the type, energy, and radioactivity of gamma-ray sources as well as the detection and classification of the energy category (fast or thermal neutrons) of neutron sources, employing raw data acquired through a CZT detector. The neutron analysis algorithm is based on the fact that in the energy-spectrum channel of 558.6 keV emitted in the nuclear reaction 113Cd + 1n → 114Cd + in the CZT detector, there is a notable difference in detection information between a CZT detector without a PE modulator and a CZT detector with a PE modulator, but there is no significant difference between the two detectors in other energy-spectrum channels. In addition, the gamma-ray analysis algorithm uses the difference in the detection information of the CZT detector between the unique characteristic energy-spectrum channel of a gamma-ray source and other channels. This efficient method of analyzing radiation characteristics is expected to be useful for the rapid radiation detection and accurate information collection on radiation sources, which are required to minimize radiation damage and manage accidents in national disaster situations, such as large-scale radioactivity leak accidents at nuclear power plants or nuclear material handling facilities.

무선통신 단말기를 이용한 무인화재 감지시스템 (Unattended fire detection system using a wireless communication device)

  • 장락주;이순이;강석원
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2015년도 춘계 종합학술대회 논문집
    • /
    • pp.25-26
    • /
    • 2015
  • 본 논문은 무선통신 단말기를 이용한 무인 화재감지 시스템의 구현에 관한 것으로 무선통신 장비가 장착된 복합화재감지기 및 자동소화 장치와 이를 네트워크로 연결한 화재감지 및 화재 초기진화 시스템, 열 영상 카메라와 영상 카메라로 구성된 카메라 시스템, 화재상황을 모니터링 할 수 있는 화재감지 모니터링 시스템의 설계에 관한 것이다. 시스템의 주요 개발 기능은 무선통신을 이용한 화재감지 장치 및 자동소화 장치 시스템; 열 영상 카메라와 영상 카메라를 기반으로 하는 화재 탐지 카메라 시스템; 영상모니터링 및 Map Viewer 기능이 있는 Monitoring Viewer 시스템 등이다.

  • PDF

Multi-touch Detection Technology Using a Divergence IR Beam Profile for Large LCD Touch Solutions

  • Lee, Young-Joon;Lee, Won-Suk;Pushchin, Victor;Song, Moon-Bong
    • Journal of Information Display
    • /
    • 제11권4호
    • /
    • pp.169-172
    • /
    • 2010
  • This paper proposes a multi-touch detection technology that can be applied to large LCDs. To achieve this goal, a set of IR LEDs and sensors was used to construct an IR matrix, and a new algorithm based on Hough transform was applied. This approach reduced the "Ghost" response of the multi-touch detection technology to make it better than other IR touch recognition technologies, and showed robust performance in terms of multi-touch recognition.

SSTDR에서 시간-주파수 상관을 활용한 저압 케이블의 고장 검출 (Fault Detection of Low Voltage Cable using Time-Frequency Correlation in SSTDR)

  • 전정채;김택희;유재근
    • 전기학회논문지
    • /
    • 제64권3호
    • /
    • pp.498-504
    • /
    • 2015
  • This paper proposed an Spread Spectrum Time Domain Reflectometry (SSTDR) using time-frequency correlation analysis in order to have more accurate fault determination and location detection than classical SSTDR despite increased signal attenuation due to the long distance to cable fault location. The proposed method was validated through comparison with classical SSTDR methods in open- and short-circuit fault detection experiments of low-voltage power cables. The experimental results showed that the proposed method can detect correlation coefficients at fault locations accurately despite reflected signal attenuation so that cable faults can be detected more accurately and clearly in comparison to existing methods.

CoNSIST : Consist of New methodologies on AASIST, leveraging Squeeze-and-Excitation, Positional Encoding, and Re-formulated HS-GAL

  • Jae-Hoon Ha;Joo-Won Mun;Sang-Yup Lee
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.692-695
    • /
    • 2024
  • With the recent advancements in artificial intelligence (AI), the performance of deep learning-based audio deepfake technology has significantly improved. This technology has been exploited for criminal activities, leading to various cases of victimization. To prevent such illicit outcomes, this paper proposes a deep learning-based audio deepfake detection model. In this study, we propose CoNSIST, an improved audio deepfake detection model, which incorporates three additional components into the graph-based end-to-end model AASIST: (i) Squeeze and Excitation, (ii) Positional Encoding, and (iii) Reformulated HS-GAL, This incorporation is expected to enable more effective feature extraction, elimination of unnecessary operations, and consideration of more diverse information, thereby improving the performance of the original AASIST. The results of multiple experiments indicate that CoNSIST has enhanced the performance of audio deepfake detection compared to existing models.

Development and Evaluation of a Next-Generation Sequencing Panel for the Multiple Detection and Identification of Pathogens in Fermented Foods

  • Dong-Geun Park;Eun-Su Ha;Byungcheol Kang;Iseul Choi;Jeong-Eun Kwak;Jinho Choi;Jeongwoong Park;Woojung Lee;Seung Hwan Kim;Soon Han Kim;Ju-Hoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권1호
    • /
    • pp.83-95
    • /
    • 2023
  • These days, bacterial detection methods have some limitations in sensitivity, specificity, and multiple detection. To overcome these, novel detection and identification method is necessary to be developed. Recently, NGS panel method has been suggested to screen, detect, and even identify specific foodborne pathogens in one reaction. In this study, new NGS panel primer sets were developed to target 13 specific virulence factor genes from five types of pathogenic Escherichia coli, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium, respectively. Evaluation of the primer sets using singleplex PCR, crosscheck PCR and multiplex PCR revealed high specificity and selectivity without interference of primers or genomic DNAs. Subsequent NGS panel analysis with six artificially contaminated food samples using those primer sets showed that all target genes were multi-detected in one reaction at 108-105 CFU of target strains. However, a few false-positive results were shown at 106-105 CFU. To validate this NGS panel analysis, three sets of qPCR analyses were independently performed with the same contaminated food samples, showing the similar specificity and selectivity for detection and identification. While this NGS panel still has some issues for detection and identification of specific foodborne pathogens, it has much more advantages, especially multiple detection and identification in one reaction, and it could be improved by further optimized NGS panel primer sets and even by application of a new real-time NGS sequencing technology. Therefore, this study suggests the efficiency and usability of NGS panel for rapid determination of origin strain in various foodborne outbreaks in one reaction.