• Title/Summary/Keyword: CO2/NO2

Search Result 675, Processing Time 0.026 seconds

Improving the CO2 Sequestration Capability and Mechanical Properties of CO2 Reactive Cement Paste Using pH Swing Method (pH Swing법을 활용한 이산화탄소 반응경화형 시멘트 경화체의 CO2 고정화 성능 및 기계적 물성 개선)

  • Cho, Seong-Min;Kim, Gyeong-Ryul;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.115-116
    • /
    • 2023
  • This study aims to investigate and improve the carbon dioxide sequestration capability and the mechanical properties of non-hydraulic low calcium silicate cement especially designed for CO2 reaction and ordinary Portland cement subjected to the carbonation curing facilitating pH swing method. Nitric acid (HNO3) was utilized as an liquid for the mixing of cement paste to enhance the initial dissolution of Ca ions from the cements by promoting low pH environment and prevent the direct precipitation of Ca with the anion, owing to the high solubility of Ca(NO3)2 in water. The results presented that the higher the concentration of HNO3, the higher the compressive strength and CO2 sequestration (until 0.1 M). Ca dissolution caused by the harsh acid attack onto the anhydrous cement particle lead to the higher carbonation reaction degree, forming abundant CaCO3 crystals after the reaction. However, cement paste mixed with excessively high concentration of HNO3 presented deterioration due to the too harsh pH environment and abundant NO3- ions which are known to retard the reaction of cement.

  • PDF

Characteristics of Solid Fuel Oxidation in a Molten Carbonate Fuel Cell

  • Lee, Choong-Gon;Kim, Yu-Jeong;Kim, Tae-Kyun;Lee, Sang-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.91-96
    • /
    • 2016
  • Oxidation behaviours of ash free coal (AFC), carbon, and H2 fuels were investigated with a coin type molten carbonate fuel cell. Because AFC has no electrical conductivity, its oxidation occurs via gasification to H2 and CO. An interesting behaviour of mass transfer resistance reduction at higher current density was observed. Since the anode reaction has the positive reaction order of H2, CO2 and H2O, the lack of CO2 and H2O from AFC results in a significant mass transfer resistance. However, the anode products of CO2 and H2O at higher current densities raise their partial pressure and mitigate the resistance. The addition of CO2 to AFC reduced the resistance sufficiently, thus the resistance reduction at higher current densities did not appear. Electrochemical impedance results also indicate that the addition of CO2 reduces mass transfer resistance. Carbon and H2 fuels without CO2 and H2O also show similar behaviour to AFC: mass transfer resistance is diminished by raising current density and adding CO2.

Variation of CO2 Concentration in Greenhouses and Effects on Growth and Yield in Alstroemeria with CO2 Supplementation

  • Seonjin Lee;WonSuk Sung;Donguk Park;Pilsoo Jeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.231-238
    • /
    • 2023
  • We analyzed the variations in the CO2 concentration and temperature between a CO2-enriched and control greenhouse. We cultivated Alstroemeria 'Hanhera' in the two greenhouses and assessed the growth parameters (stem length, stem thickness, and the number of flowers) and yield. The CO2-enriched greenhouse had a CO2 generator that produced CO2 at rate of 0.36 kg/h and its windows were programmed to open when the temperature exceeded 20℃ and close when it dropped below 15℃. The control greenhouse had no additional CO2 supplementation, and its windows were programmed to open when the temperature exceeded 20℃ and close at approximately 17:00. In the morning, CO2 concentration remained above 500 ppm in the CO2-enriched greenhouse, which was higher than that in the control greenhouse (approximately 370 ppm). The ventilation effect only through the side windows to reduce the temperature in both greenhouses did not appear dynamically. CO2 supplementation promoted plant growth, resulting in a significant increase in plant yield of over 60% compared to that of the control greenhouse. Our findings suggest that elevated CO2 concentration in the morning can significantly promote the growth and development of Alstroemeria during the winter.

Triclinic Na3.12Co2.44(P2O7)2 as a High Redox Potential Cathode Material for Na-Ion Batteries

  • Ha, Kwang-Ho;Kwon, Mi-Sook;Lee, Kyu Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.187-194
    • /
    • 2020
  • Two types of sodium cobalt pyrophosphates, triclinic Na3.12Co2.44(P2O7)2 and orthorhombic Na2CoP2O7, are compared as high-voltage cathode materials for Na-ion batteries. Na2CoP2O7 shows no electrochemical activity, delivering negligible capacity. In contrast, Na3.12Co2.44(P2O7)2 exhibits good electrochemical performance, such as high redox potential at ca. 4.3 V (vs. Na/Na+) and stable capacity retention over 50 cycles, although Na3.12Co2.44(P2O7)2 delivered approximately 40 mA h g-1. This is attributed to the fact that Na2CoP2O7 (~3.1 Å) has smaller diffusion channel size than Na3.12Co2.44(P2O7)2 (~4.2 Å). Moreover, the electrochemical performance of Na3.12Co2.44(P2O7)2 is examined using Na cells and Li cells. The overpotential of Na cells is smaller than that of Li cells. This is due to the fact that Na3.12Co2.44(P2O7)2 has a smaller charge transfer resistance and higher diffusivity for Na+ ions than Li+ ions. This implies that the large channel size of Na3.12Co2.44(P2O7)2 is more appropriate for Na+ ions than Li+ ions. Therefore, Na3.12Co2.44(P2O7)2 is considered a promising high-voltage cathode material for Na-ion batteries, if new electrolytes, which are stable above 4.5 V vs. Na/Na+, are introduced.

Evaluation of the Amount of Gas Generated through Combustion of Wood Charcoal and Agglomerated Charcoal Depending on Air Ventilation (숯과 성형숯의 연소를 통해 배출되는 가스 발생량 및 실내공간 환기량 평가)

  • JU, Young Min;JEONG, Hanseob;CHEA, Kwang-Seok;AHN, Byung-Jun;LEE, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.847-860
    • /
    • 2020
  • This study was conducted into combustion characteristics and gases generated by the combustion of charcoal and agglomerated charcoal distributed in the domestic using a combustion chamber based on the average space per crater of a charcoal-grilled restaurant in South Korea. Each of the three types of charcoals and agglomerated wood charcoals was analyzed for fuel and combustion characteristics. In addition, the concentration changes of CO, CO2, NOx, and O2 were measured for 20 minutes depending on ventilation. As a result, CO yield without ventilation was measured in the range of 1390 to 4703 ppm, and CO yield with ventilation decreases about 29.8% to 57.4%. CO2 yield without ventilation was measured in the range of 1.34% to 2.42%, and CO2 yield was about 44.1% to 53.6% when the emission was more than about 1.5% at 10 minutes. The NOx yield was divided into two cases where the NOx yield was continuously increased because of incomplete combustion, emitted ranging from 29 ppm to 47 ppm, and where emission was constant after 1 minute in the range of 9 ppm to 18 ppm. The NOx yield with ventilation tends to be similar to the without ventilation, and NOx yield decreases up to 62.5%. Therefore, it could be used for health risk assessment with the simulation of the usage environment of charcoal and agglomerated wood charcoal.

Effect of CO2 Supply on Lettuce Growth

  • Hyeon-Do Kim;Yeon-Ju Choi;Eun-Young Bae;Jum-Soon Kang
    • Journal of Environmental Science International
    • /
    • v.33 no.6
    • /
    • pp.355-365
    • /
    • 2024
  • This study was conducted to investigate the effects of CO2 supplement on growth and quality in greenhouse lettuce cultivation. When CO2 was supplied at 1,500 ppm in lettuce cultivation, overall growth parameters such as number of leaves, leaf area, plant length, fresh weight, and dry weight were superior compared to those of the control group. While there was no significant difference in relative growth rate due to CO2 supplement, an increase in leaf area index was observed with CO2 usage. Furthermore, although there was no significant difference in the content of water-soluble vitamins such as Vitamin C, B1, B2, B5, and B6 due to CO2 supplement, the Vitamin B3 content in the CO2 treatment group was 0.5 mg/kg higher than in the control group. Therefore, the use of CO2 in lettuce cultivation resulted in increased yield and promoted growth, enabling early harvesting.

A Study on the Factors Affecting the Air Environment in Chungnam Province - Focusing on Cheonan, Dangjin, and Seosan (충남 대기환경 영향요인에 관한 연구 - 천안, 당진, 서산 등을 중심으로)

  • Hwang, Kyu-Won;Kim, Jinyoung;Kwon, Young-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.118-127
    • /
    • 2021
  • Recently, the public's interest in the air environment has increased, and public health is threatened by fine particulate matter. Furthermore, the government continues efforts to improve air quality by expanding the monitoring of air pollutants and reinforcing environmental standards. Since air quality differs depending on the region in the Korean Peninsula, it is currently necessary to identify the cause and search for influencing factors. In this study, the atmospheric environment and regional differences in cities located in the Chungnam Province were observed. As a research method, regression analysis was performed for weather conditions, such as temperature, wind speed, precipitation, and season and targeted at air pollutants, such as SO2, NO2, CO, O3, PM10, and PM2.5, as well as heavy metals contained in particulate matter, such as Pb, Cd, Cr, Cu, Ni, As, Mn, Fe, Al, Ca, and Mg. In the case of PM10, the concentrations of Mn(0.4884) in Cheonan, CO(0.3329) in Dangjin, and Mg(0.5691) in Seosan were highest. In the case of PM2.5, Cheonan NO2(0.4759), Dangjin CO(0.4128), and Seosan NO2(0.3715) were significantly affected. In summary, the influencing factors vary according to the region in Chungnam province in terms of air quality, and there is a difference in the degree of contribution. Therefore, it is considered that the Korean government's management of air quality is required for each region.

Synthesis of CoFe2O4 Nanoparticles as Electrocatalyst for Oxygen Evolution Reaction (산소 발생 반응 용 전기화학촉매로 사용되는 CoFe2O4 나노 입자 합성 및 특성 분석)

  • Lee, Jooyoung;Kim, Geulhan;Yang, Juchan;Park, Yoo Sei;Jang, Myeong Je;Choi, Sung Mook
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.97-104
    • /
    • 2020
  • One of the main challenges of electrochemical water splitting technology is to develop a high performance, low cost oxygen-evolving electrode capable of substituting a noble metal catalyst, Ir or Ru based catalyst. In this work, CoFe2O4 nanoparticles with sub-44 nmsize of a inverse spinel structure for oxygen evolution reaction (OER) were synthesized by the injection of KNO3 and NaOH solution to a preheated CoSO4 and Fe(NO3)3 solution. The synthesis time of CoFe2O4 nanoparticles was controlled to control particle and crystallite size. When the synthesis time was 6 h, CoFe2O4 nanoparticles had high conductivity and electrochemical surface area. The overpotential at current denstiy of 10 mA/㎠ and Tafel slope of CoFe2O4 (6h) were 395 mV and 52 mV/dec, respectively. In addition, the catalyst showed excellent durability for 18 hours at 10 mA/㎠.

Comparison of Growth and Freshness Characteristics as Affected by CO2 Treatment during Cultivation on Radish Sprout Vegetable (무 싹채소 탄산 가스 처리에 따른 생육과 수확후 품질 특성 비교)

  • Lee, Jung-Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.2
    • /
    • pp.105-112
    • /
    • 2020
  • As sprout vegetables of interest growing, its maintaining the quality of the technology was needed to solve the problem of increasing growth and maintain quality after harvest. This experiment proved that the quality of radish sprout vegetable was affected by CO2 treatment during cultivation. Thus, the effect of CO2 treatment during cultivation on postharvest quality of radish sprout vegetable was investigated in terms of the quality changes in weight loss, gas partial pressure, SPAD, hue angle external appearance during storage at polypropylene film (thickness 30 ㎛) at 10℃. CO2 treatment used the way to gas with 700 ppm or carbonated water with 700 ppm and 1,400 ppm. The study revealed that growths on CO2 treated plant were more than those of non-treatment on stem length. After harvesting, the CO2 treated plant and control growing little different characteristics on fresh weight, plant length and so on. However, there were no differences between the CO2 treated plant and control on the Fv/Fm and SOD (superoxide dismutase). In gas partial pressure, the O2 consumption and CO2 accumulation of the CO2 treated plant tended to be more than that of non-treated plant. This study also checked that after packaging, the effects of CO2 treatment during cultivation on the quality of radish sprout vegetable was not significant. However, there were tended to CO2 treatments were lower value compared to control on SPAD, hue angle and general appearance. CO2 treatments of radish sprouting vegetable before harvest were improve growth of stem length, but ones were not improving the maintain of quality on radish sprout vegetable during shelf-life period. The results indicated that CO2 treatment only affected stem elongation until radish sprout vegetable its growth.

A study on the compressive strength development of mortar containing MgO by CO2 curing (CO2 양생에 의한 MgO 혼입 모르타르의 압축강도 발현에 관한 연구)

  • Sung, Myung-jin;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.23-24
    • /
    • 2014
  • Currently, cement and concrete industries have been contributing to the CO2 emission worldwide. Because of that, the efforts to minimize CO2 have been the subject of many researches. This study focus on the use of GGBFS and fly ash in mortar specimens as a patial replacement of cement. Because of the limitation of the initial compressive strength, the newly efforts to enhance the strength through CO2 Curing was adapted. To accelerate the reaction with CO2, MgO was replaced by percentage from 0 to 100%. Results showed that compressive strength values at 7 days with CO2 curing done on specimens was higher than that with no CO2 curing. Similar trend was observed at 14 days too. It is therefore appeared that CO2 curing has an obvious effect on compressive strength development of mortar specimens.

  • PDF