유전체 단위 반복 변이(CNV)는 유전적 구조변이의 하나로서, 암을 포함하는 인간의 질병과 밀접한 연관성이 있는 것으로 알려져 있다. 암 유전자를 규명하기 위하여, 연구자는 특정 암 환자의 대규모 유전체 데이터를 분석하여 CNV를 찾아내야하며, 동시에 대규모 유전/임상 데이터를 연계 분석하여야 한다. 본 연구는 NGS 데이터로부터 CNV를 추출하고, 추출된 CNV와 관련된 유전/임상 정보를 체계적으로 연계 분석하는 기능을 제공하는 새로운 분석 툴 CNVDAT를 제안한다. CNV 추출 모듈은 스케일 스페이스 필터링 기법을 이용하여 CNV를 추출하며, 리드 데이터에 잡음이 포함된 경우에도 CNV의 타입/위치를 정확히 추출해낸다. 또한 시퀀스 분석 모듈은 변이 영역의 브라우징 및 상호 비교를 지원하는 사용자 친화적 프로그램으로서, 암/정상 샘플의 변이 영역의 동시 분석 기능과 refGene, OMIM DB를 기반으로 하는 CNV-유전자-표현형 매핑의 연관성 분석 기능을 제공한다. 본 프로그램의 소스 코드와 샘플프로그램은 http://dblab.hallym.ac.kr/CNVDAT/에서 다운 받을 수 있다.
최근 생물정보학 분야에서 인간 유전체에 존재하는 CNV(copy number variation)에 관한 연구가 주목 받고 있다. CNV 영역은 1kbp-3Mbp 사리의 서열이 반복되거나 결실되는 변이 영역으로 정의된다. 우리는 선행연구에서 기가 시퀀싱(giga sequencing)의 결과 산출되는 DNA 서열조각인 리드(read)를 레퍼런스 시퀀스에 서열 정렬하여 CNV 영역을 찾아내는 새로운 CNV 검색 방식을 제안하였다. 후속 연구로서 본 논문에서는 DNA 서열에 존재하는 repeat 영역 문제를 해결하기 위한 새로운 방안을 제안하고, 리드의 출현 빈도 정보를 분석하여 CNV 영역을 찾아내는 CNV 영역 검색 알고리즘을 보인다. 제안된 알고리즘 Gaussian 분포를 갖는 출현 빈도 정보로부터 통계적 유의성을 갖는 영역을 추출하여 CNV 영역후보로 하고, 다음 경제 과정을 거쳐 최종의 CNV 영역을 추출한다. 성능 평가를 위하여 프로토타임 시스템을 개발하였으며, 시뮬레이션 실험을 수행하였다. 실험 결과에 의하여 제안된 방식은 반복되거나 결실되는 형태의 CNV 영역을 효율적으로 검출하며, 또한 다양한 크기의 CNV 영역을 효율적으로 검출할 수 있음을 입증한다.
인간의 유전체 서열에는 유전체 단위반복변위(copy number variation, CNV)를 포함하는 다양한 유전적 구조 변이(genetic structural variation)가 존재하며, 이는 기능적으로 질병에 대한 감수성, 치료에 대한 반응, 유전적 특성 등과 밀접한 관련이 있다. 본 논문에서는 기가 시퀀싱(giga sequencing)의 결과 산출되는 대량의 짧은 길이의 DNA 서열 데이터를 이용한 새로운 CNV 검색 방식을 제안한다. 제안하는 알고리즘에서는 레퍼런스 시퀀스에 DNA 서열 데이터를 서열 정렬시켜 각 레퍼런스 시퀀스의 위치에 대한 서열 데이터의 출현 빈도 정보를 얻은 후, 출현 빈도 정보의 패턴을 분석하여 통계적 유의성을 갖는 1kbp 이상의 연속 영역을 CNV 후보 영역으로 추출한다. 또한 제안된 알고리즘을 효율적으로 지원하기 위한 서열 정렬 방식에 대한 비교 및 분석을 수행한다. 제안된 기법의 유용성을 규명하기 위하여 다양한 실험을 수행하였다. 실험 결과에 의하면, 제안된 기법은 비교적 낮은 커버리지의 기가 시퀀싱 데이터를 이용하여 반복되거나 결실되는 다양한 형태의 CNV 영역을 효율적으로 검출하며, 또한 작은 사이즈의 CNV 영역에서부터 큰 사이즈의 CNV 영역까지 다양한 크기의 CNV 영역을 효율적으로 검출 할 수 있는 것으로 나타났다.
Papaya leaf curl China virus (PaLCuCNV) is a damaging plant pathogen causing substantial losses to crop. The complete genomes of three PaLCuCNV isolates from Ageratum conyzoides were obtained and combined with the 68 reference isolates in GenBank for comprehensive genetic diversity analyses using specialized computational tools. Sequence alignment revealed nucleotide sequence similarity ranging from 85.3% to 99.9% among 71 PaLCuCNV isolates. Employing phylogenetic analysis, 71 PaLCuCNV sequences were clustered into five groups, with no significant correlation observed between genetic differentiation and either host species or geographical origin. Additionally, 13 recombination events across all PaLCuCNV isolates were identified. Genetic diversity analysis indicated the ongoing expansion and evolution of PaLCuCNV populations, supported by a neutral model. Moreover, significant genetic differentiation was observed among distinct viral populations, primarily attributed to genetic drift. Overall, our findings provide valuable insights into the detection, genetic variation, and evolutionary dynamics of PaLCuCNV.
시퀀싱 기술의 발달로 최근에는 비교적 저렴한 비용으로 개인의 유전체 시퀀싱 데이터를 산출할 수 있게 되었다. 하지만 이를 기반으로 하는 기존의 분석 방법은 매우 고가의 컴퓨팅 환경을 요구하기 때문에 분석을 위한 비용이 매우 높은 문제가 있다. 본 논문에서 클라우드 컴퓨팅 환경의 병렬 CNV 검출알고리즘을 제안한다. 제안하는 방법은 모양 기반의 CNV 검출 알고리즘인 CNV_shape을 MapReduce 기법으로 개발한 것으로 시퀀싱 데이터를 레퍼런스 서열에 매핑한 결과로부터 리드 커버리지 (read coverage)를 계산하여 커버리지가 감소하거나 증가하는 일정 길이 이상의 영역을 검출하는 방법이다. 클라우드 컴퓨팅 환경에 적용하고 노드의 밸런싱 유지를 위한 방법으로 파티셔닝 기법을 사용하였다. 또한 실 데이터를 이용한 실험을 통해 제안하는 방법의 효율적 데이터 처리를 보인다.
모든 암 세포는 체세포 변이를 동반한다. 따라서 암 유전체 변이 분석에 의하여 암을 발생시키는 유전자 및 진단/치료법을 찾아낼 수 있다. 본 연구에서는 차세대 시퀀싱 데이터를 이용하여 암 특이적 단이 반복 변이(copy number variation, CNV) 유형을 밝히는 새로운 알고리즘을 제안한다. 제안하는 방식은 암 환자의 정상 세포와 암세포로부터 얻어진 정상 유전체와 암 유전체를 동시 분석하여 각각 CNV 후보 영역을 추출하며, 통계적 유의성 분석을 통하여 암 특이적 CNV 후보 영역을 선별하고, 다음 후처리 과정에서 참조 표준 서열(reference sequence)에 존재하는 오류 영역 보정 작업을 수행하여 정확한 암 특이적 CNV 영역을 추출해 낸다. 또한 다수의 대용량 유전체 데이터 동시 분석을 위하여 맵리듀스(MapReduce) 기법을 기반으로 하는 병렬 수행 알고리즘을 제안한다.
Kim, Ji-Hong;Yim, Seon-Hee;Jeong, Yong-Bok;Jung, Seong-Hyun;Xu, Hai-Dong;Shin, Seung-Hun;Chung, Yeun-Jun
Genomics & Informatics
/
제6권4호
/
pp.231-234
/
2008
Precise and reliable identification of CNV is still important to fully understand the effect of CNV on genetic diversity and background of complex diseases. SNP marker has been used frequently to detect CNVs, but the analysis of SNP chip data for identifying CNV has not been well established. We compared various normalization methods for CNV analysis and suggest optimal normalization procedure for reliable CNV call. Four normal Koreans and NA10851 HapMap male samples were genotyped using Affymetrix Genome-Wide Human SNP array 5.0. We evaluated the effect of median and quantile normalization to find the optimal normalization for CNV detection based on SNP array data. We also explored the effect of Robust Multichip Average (RMA) background correction for each normalization process. In total, the following 4 combinations of normalization were tried: 1) Median normalization without RMA background correction, 2) Quantile normalization without RMA background correction, 3) Median normalization with RMA background correction, and 4) Quantile normalization with RMA background correction. CNV was called using SW-ARRAY algorithm. We applied 4 different combinations of normalization and compared the effect using intensity ratio profile, box plot, and MA plot. When we applied median and quantile normalizations without RMA background correction, both methods showed similar normalization effect and the final CNV calls were also similar in terms of number and size. In both median and quantile normalizations, RMA backgroundcorrection resulted in widening the range of intensity ratio distribution, which may suggest that RMA background correction may help to detect more CNVs compared to no correction.
Objective: Chinese indigenous sheep breeds can be classified into the following three categories by their tail morphology: fat-tailed, fat-rumped and thin-tailed sheep. The typical sheep breeds corresponding to fat-tailed, fat-rumped, and thin-tailed sheep are large-tailed Han, Altay, and Tibetan sheep, respectively. Detection of copy number variation (CNV) and selection signatures provides information on the genetic mechanisms underlying the phenotypic differences of the different sheep types. Methods: In this study, PennCNV software and F-statistics (FST) were implemented to detect CNV and selection signatures, respectively, on the X chromosome in three Chinese indigenous sheep breeds using ovine high-density 600K single nucleotide polymorphism arrays. Results: In large-tailed Han, Altay, and Tibetan sheep, respectively, a total of six, four and 22 CNV regions (CNVRs) with lengths of 1.23, 0.93, and 7.02 Mb were identified on the X chromosome. In addition, 49, 34, and 55 candidate selection regions with respective lengths of 27.49, 16.47, and 25.42 Mb were identified in large-tailed Han, Altay, and Tibetan sheep, respectively. The bioinformatics analysis results indicated several genes in these regions were associated with fat, including dehydrogenase/reductase X-linked, calcium voltage-gated channel subunit alpha1 F, and patatin like phospholipase domain containing 4. In addition, three other genes were identified from this analysis: the family with sequence similarity 58 member A gene was associated with energy metabolism, the serine/arginine-rich protein specific kinase 3 gene was associated with skeletal muscle development, and the interleukin 2 receptor subunit gamma gene was associated with the immune system. Conclusion: The results of this study indicated CNVRs and selection regions on the X chromosome of Chinese indigenous sheep contained several genes associated with various heritable traits.
Exonic copy number variation (CNV), involving deletions and duplications at the gene's exon level, presents challenges in detection due to their variable impact on gene function. The study delves into the complexities of identifying large CNVs and investigates less familiar but recurrent exonic CNVs, notably enriched in East Asian populations. Examining specific cases like DRC1, STX16, LAMA2, and CFTR highlights the clinical implications and prevalence of exonic CNVs in diverse populations. The review addresses diagnostic challenges, particularly for single exon alterations, advocating for a strategic, multi-method approach. Diagnostic methods, including multiplex ligation-dependent probe amplification, droplet digital PCR, and CNV screening using next-generation sequencing data, are discussed, with whole genome sequencing emerging as a powerful tool. The study underscores the crucial role of ethnic considerations in understanding specific CNV prevalence and ongoing efforts to unravel subtle variations. The ultimate goal is to advance rare disease diagnosis and treatment through ethnically-specific therapeutic interventions.
Whole genome sequencing (WGS)-based noninvasive prenatal test (NIPT) is the first method applied in the clinical setting out of various NIPT techniques. Several companies, such as Sequenom, BGI, and Illumina offer WGS-based NIPT, each with different technical and bioinformatic approaches. Sequenom, BGI, and Illumina utilize z-, t-, and L-scores, as well as normalized chromosome values, respectively, for trisomy detection. Their outstanding performance has been demonstrated in clinical studies of more than 100,000 pregnancies. The sensitivity and specificity for detection of trisomies 13, 18, and 21 were above 98%, as reported by all three companies. Unlike other techniques, WGS-based NIPT can detect other trisomies as well as clinically significant segmental duplications/deletions within a chromosome, which could expand the scope of NIPT. Incorrect results could be due to low fetal fraction, fetoplacental mosaicism, confined placental mosaicism or maternal copy number variation (CNV). Among those, maternal CNV is a significant contributor of false positive results and therefore genome wide scanning plays an important role in preventing the occurrence of false positives. In this article, the bioinformatic techniques and clinical performance of three major companies are comprehensively reviewed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.