• Title/Summary/Keyword: CNT-reinforced

Search Result 164, Processing Time 0.028 seconds

On the vibration of aligned carbon nanotube reinforced composite beams

  • Aydogdu, Metin
    • Advances in nano research
    • /
    • v.2 no.4
    • /
    • pp.199-210
    • /
    • 2014
  • Carbon nanotubes have exceptional mechanical, thermal and electrical properties, and are considered for high performance structural and multifunctional composites. In the present study, the natural frequencies of aligned single walled carbon nanotube (CNT) reinforced composite beams are obtained using shear deformable composite beam theories. The Ritz method with algebraic polynomial displacement functions is used to solve the free vibration problem of composite beams. The Mori-Tanaka method is applied to find the composite beam mechanical properties. The continuity conditions are satisfied among the layers by modifying the displacement field. Results are found for different CNT diameters, length to thickness ratio of the composite beam and different boundary conditions. It is found that the use of smaller CNT diameter in the reinforcement element gives higher fundamental frequency for the composite beam.

Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.359-367
    • /
    • 2017
  • In this work, transient heat transfer analysis of functionally graded (FG) carbon nanotube reinforced nanocomposite (CNTRC) cylinders with various essential and natural boundary conditions is investigated by a mesh-free method. The cylinders are subjected to thermal flux, convection environments and constant temperature faces. The material properties of the nanocomposite are estimated by an extended micro mechanical model in volume fraction form. The distribution of carbon nanotube (CNT) has a linear variation along the radial direction of axisymmetric cylinder. In the mesh-free analysis, moving least squares shape functions are used for approximation of temperature field in the weak form of heat transform equation and the transformation method is used for the imposition of essential boundary conditions. Newmark method is applied for solution time depended problem. The effects of CNT distribution pattern and volume fraction, cylinder thickness and boundary conditions are investigated on the transient temperature field of the nanocomposite cylinders.

Ultrafine Grained Bulk Al Matrix Carbon Nanotube Composites Processed by High Pressure Torsion (고압비틀림 성형 공정에 의한 Al 기지 CNT 복합재료의 초미세결정 벌크화)

  • Joo,, S.H.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.423-428
    • /
    • 2010
  • Carbon nanotubes(CNTs) are expected to be ideal reinforcements of metal matrix composite materials used in aircraft and sports industries due to their high strength and low density. In this study, a high pressure torsion(HPT) process at an elevated temperature(473K) was employed to achieve both powder consolidation and grain refinement of aluminummatrix nanocomposites reinforced by 5vol% CNTs. CNT/Al nanocomposite powders were fabricated using a novel molecular-level mixing process to enhance the interface bonding between the CNTs and metal matrix before the HPT process. The HPT processed disks were composed of mostly equilibrium grain boundaries. The CNT-reinforced ultrafine grained microstructural features resulted in high strength and good ductility.

Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations

  • Bensaid, Ismail;Kerboua, Bachir
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.207-223
    • /
    • 2019
  • Current investigation deals with the thermal stability characteristics of carbon nanotube reinforced composite beams (CNTRC) on elastic foundation and subjected to external uniform temperature rise loading. The single-walled carbon nanotubes (SWCNTs) are supposed to have a distribution as being uniform or functionally graded form. The material properties of the matrix as well as reinforcements are presumed to be temperature dependent and evaluated through the extended rule of mixture which incorporates efficiency parameters to capture the size dependency of the nanocomposite properties. The governing differential equations are achieved based on the minimum total potential energy principle and Euler-Bernoulli beam model. The obtained results are checked with the available data in the literature. Numerical results are supplied to examine the effects of numerous parameters including length to thickness ratio, elastic foundations, temperature change, and nanotube volume fraction on the thermal stability behaviors of FG-CNT beams.

Experimental Study on Improving Compressive Strength of MWCNT Reinforced Cementitious Composites (MWCNT 보강 시멘트 복합체의 압축강도 향상에 대한 실험적 연구)

  • Kang, Su-Tae;Park, Soon-Hong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.63-70
    • /
    • 2014
  • This experimental study was intended to improve the compressive strength of multi-walled CNT reinforced cementitious composites with efficiency. The variables considered are the degree of sonication, the amount of surfactant, the replacement ratio of silica fume, etc. Optical microscope informed that fiber dispersion of CNT was improved with the increase of sonication time, and the compressive strength was proved to be enhanced as the degree of sonication increased. When superplasticizer as a surfactant had SP/CNT ratio of 4~6, the best improvement in strength was obtained. Silica fume was shown to produce the highest compressive strength at 10% replacement. Microstructure of CNT composites was also analyzed; XRD and SEM results indicated that CNT addition hardly changed hydration products and microstructure, and MIP analysis found the reduction of total porosity as well as the increase of nano-pores with the size of tens of nm instead of the decrease of pore distribution in the region of around 10 ${\mu}m$ and 100 nm. The results of microstructure analysis explains that the strength improvement is closely related to physical contribution rather than chemical influence by adding CNT.

Multi-walled Carbon Nanotube-Reinforced Hydroxyapatite Coating on Ti Substrates by Aerosol Deposition (에어로졸 증착법에 의해 티타늄 기판위에 제조된 다중벽 탄소나노튜브 강화 수산화아파타이트 코팅층)

  • Hahn, Byung-Dong;Park, Dong-Soo;Ryu, Jung-Ho;Choi, Jong-Jin;Yoon, Woon-Ha;Lee, Byung-Kuk;Kim, Hyoun-Ee
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.610-617
    • /
    • 2008
  • Multi-walled carbon nanotube(CNT) reinforced hydroxyapatite composite coating with a thickness of $5{\mu}m$ has been successfully deposited on Ti substrate using aerosol deposition(AD). The coating had a dense microstructure with no cracks or pores, showing good adhesion with the Ti substrate. Microstructural observation using field-emission scanning electron microscopy(FE-SEM) and transmission electron microscopy(TEM) showed that CNTs with original tubular morphology were found in the hydroxyapatite-CNT(HA-CNT) composite coating. Measurements of hardness and elastic modulus for the coating were performed by nanoindentation tests, indicating that the mechanical properties of the coating were remarkably improved by the addition of CNT to HA coating. Therefore, HA-CNT composite coating produced by AD is expected to be potentially applied to the coating for high load bearing implants.

Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.431-454
    • /
    • 2016
  • In this paper, the nonlinear static and free vibration analysis of Euler-Bernoulli composite beam model reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) with initial geometrical imperfection under uniformly distributed load using finite element method (FEM) is investigated. The governing equations of equilibrium are derived by the Hamilton's principle and von Karman type nonlinear strain-displacement relationships are employed. Also the influences of various loadings, amplitude of the waviness, UD, USFG, and SFG distributions of carbon nanotube (CNT) and different boundary conditions on the dimensionless transverse displacements and nonlinear frequency ratio are presented. It is seen that with increasing load, the displacement of USFG beam under force loads is more than for the other states. Moreover it can be seen that the nonlinear to linear natural frequency ratio decreases with increasing aspect ratio (h/L) for UD, USFG and SFG beam. Also, it is shown that at the specified value of (h/L), the natural frequency ratio increases with the increasing the values amplitude of waviness while the dimensionless nonlinear to linear maximum deflection decreases. Moreover, with considering the amplitude of waviness, the stiffness of Euler-Bernoulli beam model reinforced by FG-CNT increases. It is concluded that the R parameter increases with increasing of volume fraction while the rate of this parameter decreases. Thus one can be obtained the optimum value of FG-CNT volume fraction to prevent from resonance phenomenon.

Fabrication and Fracture Properties of Alumina Matrix Composites Reinforced with Carbon Nanotubes (Carbon Nanotube로 강화된 알루미나 기지 복합재료의 제조 및 파괴특성)

  • Kim, Sung Wan;Chung, Won Sub;Sohn, Kee-Sun;Son, Chang-Young;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.50-58
    • /
    • 2009
  • In this study, alumina matrix composites reinforced with carbon nanotubes (CNTs) were fabricated by ultrasonic dispersion, ball milling, mixing, compaction, and sintering processes, and their relative density, electrical resistance, hardness, flexure strength, and fracture toughness were evaluated. 0~3 vol.% of CNTs were relatively homogeneously dispersed in the composites in spite of the existence of some pores. The three-point bending test results indicated that the flexure strength increased with increasing volume fraction of CNTs, and reached the maximum when the CNT fraction was 1.5 vol.%. The fracture toughness increased as the CNT fraction increased, and the fracture toughness of the composite containing 3 vol.% of CNTs was higher by 40% than that of the monolithic alumina. According to observation of the crack propagation path after the indentation fracture test, a new toughening mechanism of grain interface bridging-induced CNT bridging was suggested to explain the improvement of fracture toughness in the alumina matrix composites reinforced with CNTs.

The Effect of the Mixing Order on PVA Fiber-Reinforced Cementitious Composites with CNTs (CNT 혼입 PVA 섬유보강 시멘트 복합체에서의 배합 순서에 따른 영향)

  • Seong-Hyun Park;Dongmin Lee;Seong-Cheol Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.130-137
    • /
    • 2023
  • This study analyzed the effect of mixing order on the flowability, compressive strength, and flexural strength of cement composites reinforced with polyvinyl alcohol(PVA) fibers and multi-walled carbon nanotubes(MWCNTs). The experimental results showed that the addition of CNTs significantly reduced the flowability, and the flowability was considerably affected by the mixing order when CNTs were added. The compressive strength was most effectively improved when water and CNTs solution were mixed first before adding PVA fibers, and the flexural strength was highest when water and CNTs solution were mixed with PVA fibers after dry mixing. However, there was no clear correlation between the flexural toughness and the mixing order. In addition, scanning electron microscopy(SEM) image analysis was conducted to analyze the microstructure. The SEM images showed that CNTs were randomly dispersed through the specimens and contributed to the strength improvement, but the effect of the mixing order was not clearly observed. The main results of this study are expected to be useful for evaluations of workability and material performance of PVA fiber-reinforced cement composites with CNTs.

Elastic properties of CNT- and graphene-reinforced nanocomposites using RVE

  • Kumar, Dinesh;Srivastava, Ashish
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1085-1103
    • /
    • 2016
  • The present paper is aimed to evaluate and compare the effective elastic properties of CNT- and graphene-based nanocomposites using 3-D nanoscale representative volume element (RVE) based on continuum mechanics using finite element method (FEM). Different periodic displacement boundary conditions are applied to the FEM model of the RVE to evaluate various elastic constants. The effects of the matrix material, the volume fraction and the length of reinforcements on the elastic properties are also studied. Results predicted are validated with the analytical and/or semiempirical results and the available results in the literature. Although all elastic stiffness properties of CNT- and graphene-based nanocomposites are found to be improved compared to the matrix material, but out-of-plane and in-plane stiffness properties are better improved in CNT- and graphene-based nanocomposites, respectively. It is also concluded that long nanofillers (graphene as well as CNT) are more effective in increasing the normal elastic moduli of the resulting nanocomposites as compared to the short length, but the values of shear moduli, except $G_{23}$ of CNT nanocomposite, of nanocomposites are slightly improved in the case of short length nanofillers (i.e., CNT and graphene).