• Title/Summary/Keyword: CNT content

Search Result 77, Processing Time 0.021 seconds

Characteristics of Ni-Carbon Nanotube Composite Coatings with the CNT Content (CNT 첨가량에 따른 Ni-CNT 복합도금막의 특성)

  • Bae, KyooSik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.7-12
    • /
    • 2013
  • Ni-CNT(Carbon Nanotube) composite coatings is were formed by electrodeposition and their physical properties were investigated with variations of CNT content(1, 3, 6. 9 g/L) in the electrolyte solution, while the current density and electroplating time were fixed respectively at $6A/dm^2$ and 90 min.. With increasing CNT content from 1 to 9 g/L, incorporated CNTs into the composite coating were limited from 4.65 wt.% to 7.38 wt.%. Microhardness and contact angle values were increased with increasing CNT content of upto 3 g/L. With increasing the CNT content further, physical properties were degraded due to agglomeration, poor adhesion of CNTs to Ni matrix and thus rough surfaces. Optimum electroplating conditions were found to be the CNT content of 3 g/L, current density of 6 A/dm2 and electroplating time of 90 min.

Electrical and Mechanical Properties of Carbon Particle Reinforced Rubber for Electro-Active Polymer Electrode (전기활성 고분자 전극용 탄소입자 강화고무의 전기적 및 기계적 특성)

  • Lee, Jun Man;Ryu, Sang Ryeoul;Lee, Dong Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1465-1471
    • /
    • 2013
  • The electrical and mechanical properties of room temperature vulcanized (RTV) silicone rubber composites are investigated as functions of multi-walled carbon nanotube (CNT), carbon black (CB), and thinner content. The thinner is used to improve the CNT and CB dispersion in the matrix. The electrical and mechanical properties of the composite with CNT are improved when compared to the composite with CB at the same content. As the thinner content is 80 phr, the electric resistance of the composite decreases significantly with the CNT content and shows contact point saturation of CNT at 2.5 phr. As the thinner content increases, the dispersion of conductive particles improves; however, the critical CB content increases because of the reduction in the CB weight ratio. It is believed that an electrode that needs good flexibility and excellent electrical properties can be manufactured when the amount of CNT and CB are increased with the thinner content.

Preparation, Morphology and Electrical Conductivity of Polystyrene/Polydopamine- Carbon Nanotube Microcellular Foams via High Internal Phase Emulsion Polymerization (고내상 에멀젼 중합에 의한 폴리스티렌/폴리도파민-탄소나노튜브 미세기공 발포체의 제조, 모폴로지 및 전기 전도도)

  • Kim, Haseung;Na, Hyo Yeol;Lee, Jong Heon;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.293-299
    • /
    • 2015
  • Conductive microcellular foams consisted of polystrene (PS) and polydopamine-coated carbon nanotube (PDA-CNT) were prepared via high internal phase emulsion (HIPE) polymerization and their morphology and electrical conductivity were investigated. CNT as a conductive nanofiller was modified to PDA-CNT by coating with hydrophilic PDA on the surface of CNT to increase aqueous phase dispersion and emulsion stability. It was possible to prepare the HIPEs having higher PDA-CNT content and the resultant foams having improved conductivity due to its good dispersion. The foams showed the morphology of interconnected cell structure. As PDA-CNT content increased, yield stress and storage modulus increased and cell size reduced. The PDA-CNT content showing electrical percolation threshold was ca. 0.58 wt% and the conductivity at PDA-CNT content of 5 wt% was increased to $10^{-3}S/m$.

Mode 1 Fracture Toughness Test of CNT/Epoxy Composites with Different CNT Content (CNT 함량에 따른 CNT/Epoxy 복합재료 제작 및 모드 1 파괴 인성 평가)

  • KWON, DONG-JUN;YOO, HYEONGMIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.86-91
    • /
    • 2021
  • In order to save the energy in vehicles using renewable energy, it is necessary to reduce the weight of parts with polymer matrix composites. Carbon nanotube (CNT) is the nano-scale reinforcement used to increase the interlaminar strength of fiber reinforced composites or enhance the fracture toughness of polymer. However, since the degree of improvement in mechanical properties varies according to the various experimental conditions such as shape of reinforcement, types of matrix and dispersion of reinforcement, research to find the optimal conditions is essentially needed. In this study, CNT/epoxy composites with different CNT concentration were fabricated under the same conditions, and the optimal CNT content (2 wt%) was found through Mode 1 fracture toughness test. Furthermore, through optical microscopy, it was confirmed that the fracture toughness was rather decreased due to the CNT aggregation when the CNT content exceeded 2 wt%.

Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material (CNT를 첨가한 Silicon/Carbon 음극소재의 전기화학적 특성)

  • Jung, Min zy;Park, Ji Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.16-21
    • /
    • 2016
  • Silicon/Carbon/CNT composites as anode materials for lithium-ion batteries were synthesized to overcome the large volume change during lithium alloying-de alloying process and low electrical conductivity. Silicon/Carbon/CNT composites were prepared by the fabrication processes including the synthesis of SBA-15, magnesiothermic reduction of SBA-15 to obtain Si/MgO by ball milling, carbonization of phenolic resin with CNT and HCl etching. The prepared Silicon/Carbon/CNT composites were analysed by XRD, SEM, BET and EDS. In this study, the electrochemical effect of CNT content to improve the capacity and cycle performance was investigated by charge/discharge, cycle, cyclic voltammetry and impedance tests. The coin cell using Silicon/Carbon/CNT composite (Si:CNT=93:7 in weight) in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC:DMC:EMC=1:1:1 vol%) has better capacity (1718 mAh/g) than those of other composition coin cells. The cycle performance of coin cell was improved as CNT content was increased. It is found that the coin cell (Si:CNT=89:11 in weight) has best capacity retension (83%) after 2nd cycle.

Effects of Strain-Induced Crystallization on Mechanical Properties of Elastomeric Composites Containing Carbon Nanotubes and Carbon Black (탄소나노튜브 및 카본블랙 강화 고무복합재료의 변형에 의한 결정화가 기계적 특성에 미치는 영향)

  • Sung, Jong-Hwan;Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.999-1005
    • /
    • 2011
  • The effects of strain-induced crystallization (SIC) on the mechanical properties of elastomeric composites as functions of extension ratio (${\lambda}$), multiwalled carbon nanotube (CNT) content, and carbon black (CB) content are investigated. The differential scanning calorimetry (DSC) analysis shows that the degree of crystallinity increases with the increase in the CB and CNT content. As ${\lambda}$ increases, the glass transition temperature (Tg) of the composites increases, and the latent heat of crystallization (LHc) of the composites is maximum at ${\lambda}$=1.5. It is found that the mechanical properties have a linear relation with LHc, depending on the CNT content. According to the TGA (thermogravimetric analysis), the weight loss of the composite matrix is 94.3% and the weight of the composites decreases with the filler content. The ratio of tensile modulus ($E_{comp}/E_{matrix}$) is higher than that of tensile strength (${\sigma}_{comp}/{\sigma}_{matrix}$) because of the CNT orientation inside the elastomeric composites.

Electrical and Mechanical Properties of Semiconducting Shield for Power Cable by Carbon Nanotube Content (탄소나노튜브(CNT) 함량에 따른 전력케이블용 반도전 재료(층)의 전기적/기계적 특성 연구)

  • Yang Jong-Seok;Lee Kyoung-Yang;Shin Dong-Hoon;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.8
    • /
    • pp.381-386
    • /
    • 2006
  • In this study, we have investigated electrical and mechanical properties of semiconducting materials for power cable caused by CNT. Specimens were made of sheet form with the four of specimens for measurement. Volume resistivity of specimens was measured by volume resistivity meter after 10 minutes in the pre-heated oven of both $23{\pm}\;1\;[^{\circ}C]\;and\;90{\pm}\;1\;[^{\circ}C]$. And stress-strain of specimens was measured by TENSOMETER 2000. A speed of measurement was 200[mm/min], ranges of stress and strain were 400[Kgf/Cm2] and 600[%]. From this experimental results, the volume resistivity had different properties because of PTC/NTC tendency at between $23[^{\circ}C]\;and\;90[^{\circ}C]$. Also volume resistivity was low by increasing the content of CNT. It means that a small amount of CNT has a excellent electrical properties. And stress was increased, while strain was decreased by increasing the content of CNT. Thus, we could know that a small amount of CNT has a excellent electrical and mechanical oroperties.

A Study of Mechanical Interfacial Properties of Carbon Nanotube on Carbon Fiber/Epoxy Resin Composites (탄소나노튜브로 표면처리 된 탄소섬유/에폭시 수지 복합재료의 기계적 특성 연구)

  • Hong, Eunmi;Lee, Kyuhwan;Kim, Yangdo;Lim, Dongchan
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.223-228
    • /
    • 2013
  • In this work, the grow of carbon nanotube (CNT) on carbon fiber was introduced on PAN-based carbon fibers for the enhancement of mechanical interfacial strength of carbon fibers-reinforced composites. The surface properties of carbon fibers were determined by scanning electron microscopy (SEM) and mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS). From the results, it was found that the mechanical interfacial properties of CNT-carbon fibers-reinforced composites (CNT-CFRPs) enhanced with decreasing the CNT content. The excessive CNT content can lead the failure due to the interfacial separation between fibers and matrices in this system. In conclusion, the optimum CNT content on carbon fiber surfaces can be a key factor to determine the mechanical interfacial properties of the CNT-CFRPs.

A Study on the Property of Semiconductive Shield Composite through Karl Fischer Method in Power Cable (Karl Fischer를 통한 전력케이블용 반도전 Composite 특성 연구)

  • Yang, Hoon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.187-188
    • /
    • 2008
  • In this paper, we have investigated water content of semiconductive shield materials for power cables, EEA(Ethylene Ethyl Acrylate) is used polymer matrix. And filler is used CNT(Carbon Nanotube) and CB(Carbon Black). EEA, CNT and CB is favor moisture. In case of EEA, it has polyolefin resin that strong polarity combination. To research water content, experimental method used KF(Karl Fischer). KF method is Electrochemical titration based on chemical reaction. As a result, specification by KEPCO(Korea Electric Power Corporation) is lower than 800ppm. CNT and CB ratio of 80 versus 20 is best specimen that had lowest moisture content. It seem likely to increase crosslinking rate, CNT between CB.

  • PDF

Characteristics Analysis of Nano-composites Films Using Extruder (압출성형기를 이용한 나노복합재 필름의 특성 분석)

  • Kwon, Il-Jun;Park, Sung-Min;Yoo, Sung-Hun;Yeum, Jeong-Hyun
    • Textile Coloration and Finishing
    • /
    • v.28 no.2
    • /
    • pp.101-108
    • /
    • 2016
  • Polypropylene(PP)/multiwalled carbon nanotubes(MWCNT) nanocomposites films and PP/poly(vinyl alcohol)/CNT nanocomposites films were prepared through melt mixing method by the extruder. The PP/CNT nanocomposites films, which contain CNT of a variable content, were prepared for the first time and research on a appropriate content of the CNT on the PP/CNT nanocomposites films was conducted. The effects of take-up speed of the extruder on the mechanical and chemical properties of the PP/CNT and PP/PVA/CNT nanocomposites film were studied. Field emission scanning electron microscope(FE-SEM) was used to examine the surface morphology and the DSC measurement and tensile test were conducted. It was found that the properties decreased when take-up speed was increased.