• Title/Summary/Keyword: CNT Field Emitter

Search Result 76, Processing Time 0.03 seconds

A Study on the Surface Treatment of CNT Paste Emitter by Ar Ion Irradiation (아르곤 이온빔을 이용한 CNT 페이스트 에미터의 표면처리에 관한 연구)

  • Kwon, Sang-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.456-461
    • /
    • 2007
  • In this study, a surface treatment method using accelerated Ar ions was experimented for exposing the carbon nanotubes (CNT) from the screen-printed CNT paste. After making a cathode electrode on the glass substrate, photo sensitive CNT paste was screen-printed, and then back-side was exposed by UV light. Then, the exposed CNT paste was selectively remained by development. After post-baking, the remained CNT paste was bombarded by accelerated Ar ions for removing some binders and exposing only CNTs. As results, the field emission characteristics were strongly depended on the accelerating energy, bombardment time, and the power of RF plasma ion source. When Ar ions accelerated with 100 eV energy from the 100 W RF plasma source are bombarded on the CNT paste surface for 10 min, the emission level and the uniformity were best.

Field Emission Characteristics of Surface-treated CNT Emitter by Ar Ion Bombardment (아르곤 이온에 의해 표면처리된 CNT 에미터의 전계방출 특성)

  • Kwon, Sang-Jik
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.26-31
    • /
    • 2007
  • A surface treatment was performed after the screen printing of a carbon nanotube paste for obtaining the carbon nanotube field emission array(CNT FEA) on the soda-lime glass substrate. In this experiment, Ar ion bombardment was applied as an effective surface treatment method. After making a cathode electrode on the glass substrate, photo sensitive CNT paste was screen-printed, and then back-side was exposure by uv light. Then, the exposed CNT paste was selectively remained by development. After post-baking, the remained CNT paste was bombarded by accelerated Ar ions for removing some binders and exposing only CNTs. As results, the field emission characteristics were strongly depended on the accelerating energy. At 100 eV, the emission was highest and as the acceleration energy increases more then 100 eV, the emission decreased. This was due to the removal of CNT itself as well as binders.

Improving the Long-term Field Emission Stability of Carbon Nanotubes by Coating Co and Ni Oxide Layers

  • Choe, Ju-Seong;Lee, Han-Seong;Lee, Nae-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.18.1-18.1
    • /
    • 2011
  • Some applications of carbon nanotubes (CNTs) as field emitters, such as x-ray tubes and microwave amplifiers, require high current emission from a small emitter area. To emit the high current density, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects including high crystallinity, aspect ratio, distribution density, height uniformity, adhesion on a substrate, low outgassing rate during electron emission in vacuum, etc. In particular, adhesion of emitters on the substrate is one of the most important parameters to be secured for high current field emission from CNTs. So, we attempted a novel approach to improve the adhesion of CNT emitters by incorporating metal oxide layers between CNT emitters. In our previous study, CNT emitters were fabricated on a metal mesh by filtrating the aqueous suspensions containing both highly crystalline thin multiwalled CNTs and thick entangled multiwalled CNTs. However, the adhesion of CNT film was not enough to produce a high emission current for an extended period of time even after adopting the metal mesh as a fixing substrate of the CNT film. While a high current was emitted, some part of the film was shown to delaminate. In order to strengthen the CNT networks, cobalt-nickel oxides were incorporated into the film. After coating the oxide layer, the CNT tips seemed to be more strongly adhered on the CNT bush. Without the oxide layer, the field emission voltage-current curve moved fast to a high voltage side as increasing the number of voltage sweeps. With the cobalt-nickel oxide incorporated, however, the curve does not move after the second voltage sweep. Such improvement of emission properties seemed to be attributed to stronger adhesion of the CNT film which was imparted by the cobalt-nickel oxide layer between CNT networks. Observed after field emission for an extended period of time, the CNT film with the oxide layer showed less damage on the surface caused by high current emission.

  • PDF

Effect of Ball Milling on Photosensitive Carbon Nanotube Pastes and Their Field Emission Properties (감광성 CNT paste에 대한 저에너지 Ball Milling 처리 효과)

  • Jang, Eun-Soo;Lee, Han-Sung;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.154-154
    • /
    • 2008
  • Although the screen printing technology using photosensitive carbon nanotube (CNT) paste has many advantages such as low cost, simple process, uniform emission, and capability of mass production, the CNT paste needs to be improved further in CNT dispersion, printability, adhesion, electrical conductivity, population of CNT emitters, etc. Ball milling has been frequently employed to prepare the CNT paste as ball milling can mix its ingredients very well and easily cut the long, entangled CNTs. This study carried out a parametric approach to fabricating the CNT paste in terms of low-energy ball milling and a paste composition. Field emission properties of the CNT paste was characterized with CNT dispersion and electrical conductivity which were measured by a UV-Vis spectrophotometer and a 4-point probe method, respectively. Main variables in formulating the CNT paste include a length of milling time, and amounts of CNTs and conductive inorganic fillers. In particular, we varied not only the contents of conductive fillers but also used two different sizes of filler particles of ${\mu}m$ and nm ranges. Among many variations of conductive fillers, the best field emission characteristics occurred at the 5 wt% fillers with the mixing ratio of 3:1 for ${\mu}m$-and nm-sizes. The amount and size of fillers has a great effect on the morphology, processing stability, and field emission characteristics of CNT emitter dots. The addition a small amount of nm-size fillers considerably improved the field emission characteristics of the photosensitive CNT paste.

  • PDF

A X-ray Tube Using Field Emitter Made by Multi-walled Carbon Nanotube Yarns

  • Kim, Hyun-Suk;Castro, Edward Joseph D.;Kwak, Seung-Im;Ju, Jin-Young;Hwang, Yong-Gyoo;Lee, Choong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.392-392
    • /
    • 2011
  • Carbon nanotubes (CNT) emitter has widely become an attractive mechanism that draws growing interests for cold cathode field emission.$^{1,2}$ CNT yarns have demonstrated its potential as excellent field emitters.$^3$ Extensive simulations were carried out in designing a CNT yarn-based cathode assembly. The focal spot size dependence on the anode surface of the geometric parameters such as axial distance of the electrostatic focus lens from the cathode and the applied bias voltages at the cathode, grid mesh and electrostatic focus lens were studied. The detailed computer simulations using Opera 3D electromagnetic software$^4$ had revealed that a remarkable size of focal spot under a focusing lens triode type set-up design was achieved. The result of this optimization simulation would then be applied for the construction of the CNT yarn based micro-focus x-ray tube with its field emission characteristics evaluated.

  • PDF

Characterization of Triode-type CNT-FED Fabricated using Photo-sensitive CNT Paste

  • Kwon, Sang-Jik;Chung, Hak-June;Lee, Sang-Heon;Choi, Hyung-Wook;Shin, Young-Hwa;Lee, Dal-Ho;Lee, Jong-Duk
    • Journal of Information Display
    • /
    • v.5 no.4
    • /
    • pp.18-22
    • /
    • 2004
  • A carbon nanotube field emission display (CNT FED) panel with a 2 inch diagonal size was fabricated through screen printing of a prepared photo-sensitive CNT paste and vacuum in-line sealing technology. After surface treatment of the patterned CNT, only the carbon nanotube tips are uniformly exposed on the surface. The diameter of the exposed CNTs are usually about 20nm. The sealing temperature of the panel is around 390 $^{\circ}C$ and the vacuum level is obtained with $1.4{\times}10^{-5}$torr at the sealing. The field emission properties of the diode type CNT FED panel are characterized. Currently, we are in the process of developing a triode type CNT FED with a self-aligned gate-emitter structure.

Fabrication of Field Emitter Arrays by Transferring Filtered Carbon Nanotubes onto Conducting Substrates

  • Jang, Eun-Soo;Goak, Jung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.311-311
    • /
    • 2009
  • Carbon nanotubes (CNTs) belong to an ideal material for field emitters because of their superior electrical, mechanical, and chemical properties together with unique geometric features. Several applications of CNTs to field emitters have been demonstrated in electron emission devices such as field emission display (FED), backlight unit (BLU), X-ray source, etc. In this study, we fabricated a CNT cathode by using filtration processes. First, an aqueous CNT solution was prepared by ultrasonically dispersing purified single-walled CNTs (SWCNTs) in deionized water with sodium dodecyl sulfate (SDS). The aqueous CNT solution in a milliliter or even several tens of micro-litters was filtered by an alumina membrane through the vacuum filtration, and an ultra-thin CNT film was formed onto the alumina membrane. Thereafter, the alumina membrane was solvated by acetone, and the floating CNT film was easily transferred to indium-tin-oxide (ITO) glass substrate in an area defined as 1 cm with a film mask. The CNT film was subjected to an activation process with an adhesive roller, erecting the CNTs up to serve as electron emitters. In order to measure their luminance characteristics, an ITO-coated glass substrate having phosphor was employed as an anode plate. Our field emitter array (FEA) was fairly transparent unlike conventional FEAs, which enabled light to emit not only through the anode frontside but also through the cathode backside, where luminace on the cathode backside was higher than that on the anode frontside. Futhermore, we added a reflecting metal layer to cathode or anode side to enhance the luminance of light passing through the other side. In one case, the metal layer was formed onto the bottom face of the cathode substrate and reflected the light back so that light passed only through the anode substrate. In the other case, the reflecting layer coated on the anode substrate made all light go only through the cathode substrate. Among the two cases, the latter showed higher luminance than the former. This study will discuss the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the either side.

  • PDF

Fabrication of Triode-Type CNT-FED by A Screen-printing of CNT Paste

  • Kwon, Sang-Jik;Shon, Byeong-Kyoo;Chung, Hak-June;Lee, Sang-Heon;Choi, Hyung-Wook;Lee, Jong-Duk;Lee, Chun-Gyoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.866-869
    • /
    • 2004
  • A carbon nanotube field emission display(CNT FED) panel with a 2 inch diagonal size was fabricated by using a screen printing of a prepared photo-sensitive CNT paste and vacuum in-line sealing technology. After a surface treatment of the patterned CNT, only the carbon nanotube tips are uniformly exposed on the surface. The diameter of the exposed CNTs are usually about 20nm. The sealing temperature of the panel was around 390 $^{\circ}C$ and the vacuum level was obtained with $1.4{\times}10^{-5}$torr at the sealing. The field emission properties of the diode type CNT FED panel were characterized Now, we are developing a triode type CNT FED with a self-aligned gate-emitter structure.

  • PDF

Effect of Nano-Sized Silver Powders in CNT Paste on Field Emission Characteristics of Carbon Nanotube Cathode (탄소나노튜브 캐소드의 전계방출 특성에 미치는 CNT 페이스트용 나노입자 은분말의 영향)

  • An, Young-Je;Lee, Ji-Eon;Shin, Heon-Cheol;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2008
  • Carbon nanotube (CNT) cathodes were fabricated using nano-sized silver (Ag) powders as a bonding material between the CNTs and cathode electrodes. The effects of the powder size on the sintering behavior, the current density and emission image for CNT cathodes were investigated. As the diameter of the Ag powders decreases to 10 nm, the sintering temperature of the CNT cathode was lowered primarily due to the higher specific surface area of the Ag powders. In this study, it was demonstrated that nano-sized Ag powders can be feasibly used as a bonding material for a screen-printed CNT cathode, yielding a high current density and a uniform emission image.