• Title/Summary/Keyword: CNS response

Search Result 60, Processing Time 0.028 seconds

Gait Training Strategy by CPG in PNF with Brain Injured Patients (고유수용성 신경촉진법에서 CPG를 이용한 뇌손상자 보행훈련전략)

  • Bae Sung-soo
    • The Journal of Korean Physical Therapy
    • /
    • v.17 no.1
    • /
    • pp.108-122
    • /
    • 2005
  • The gait training strategy in very important things for central nervous system(CNS) injury patients. There are many method and strategy for regaining of the gait who had CNS injury. A human being has central pattern generator(CPG) is spinal CPG for locomotion. It is a neural network which make the cyclical patterns and rhythmical activities for walking. Sensory input from loading and hip position is essential for CPG stimulation that makes the central neural rhythm and pattern generating structure. From sensory input, the proprioceptive information facilitate proximal muscles that controlled in voluntarily from cortical level and visual and / or acoustical information facilitate distal muscles that controlled voluntarily from subcortical level. Gait training method can classify that is functional level and structural level. Functional level includ level surface gait, going up and down the stair. It is important to facilitate a guide tempo in order to activate the central pattern generators. During the functional test or functional activities, can point out the poor period in gait that have to be facilitate in structural level. There are many access methods with patient position and potentiality. The methods are using of rhythmic initiation, replication and combination of isotonic with standing position. Clinically using it on weight transfer onto the stance leg, loading response, loading response and pre-swing, terminal stance, up and downwards stairs.

  • PDF

Mechanisms of 5-azacytidine-induced damage and repair process in the fetal brain

  • Ueno, Masaki
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.55-64
    • /
    • 2006
  • The fetal central nervous system (CNS) is sensitive to diverse environmental factors, such as alcohol, heavy metals, irradiation, mycotoxins, neurotransmitters, and DNA damage, because a large number of processes occur during an extended period of development. Fetal neural damage is an important issue affecting the completion of normal CNS development. As many concepts about the brain development have been recently revealed, it is necessary to compare the mechanism of developmental abnormalities induced by extrinsic factors with the normal brain development. To clarify the mechanism of fetal CNS damage, we used one experimental model in which 5-azacytidine (5AZC), a DNA damaging and demethylating agent, was injected to the dams of rodents to damage the fetal brain. 5AzC induced cell death (apoptosis)and cell cycle arrest in the fetal brain, and it lead to microencephaly in the neonatal brain. We investigated the mechanism of apoptosis and cell cycle arrest in the neural progenitor cells in detail, and demonstrated that various cell cycle regulators were changed in response to DNA damage. p53, the guardian of genome, played a main role in these processes. Further, using DNA microarray analysis, tile signal cascades of cell cycle regulation were clearly shown. Our results indicate that neural progenitor cells have the potential to repair the DNA damages via cell cyclearrest and to exclude highly affected cells through the apoptotic process. If the stimulus and subsequent DNA damage are high, brain development proceeds abnormally and results in malformation in the neonatal brain. Although the mechanisms of fetal brain injury and features of brain malformation afterbirth have been well studied, the process between those stages is largely unknown. We hypothesized that the fetal CNS has the ability to repair itself post-injuring, and investigated the repair process after 5AZC-induced damage. Wefound that the damages were repaired by 60 h after the treatment and developmental processes continued. During the repair process, amoeboid microglial cells infiltrated in the brain tissue, some of which ingested apoptotic cells. The expressions of genes categorized to glial cells, inflammation, extracellular matrix, glycolysis, and neurogenesis were upregulated in the DNA microarray analysis. We show here that the developing brain has a capacity to repair the damage induced by the extrinsic stresses, including changing the expression of numerous genes and the induction of microglia to aid the repair process.

  • PDF

Promotion of Remyelination by Sulfasalazine in a Transgenic Zebrafish Model of Demyelination

  • Kim, Suhyun;Lee, Yun-Il;Chang, Ki-Young;Lee, Dong-Won;Cho, Sung Chun;Ha, Young Wan;Na, Ji Eun;Rhyu, Im Joo;Park, Sang Chul;Park, Hae-Chul
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.1013-1021
    • /
    • 2015
  • Most of the axons in the vertebrate nervous system are surrounded by a lipid-rich membrane called myelin, which promotes rapid conduction of nerve impulses and protects the axon from being damaged. Multiple sclerosis (MS) is a chronic demyelinating disease of the CNS characterized by infiltration of immune cells and progressive damage to myelin and axons. One potential way to treat MS is to enhance the endogenous remyelination process, but at present there are no available treatments to promote remyelination in patients with demyelinating diseases. Sulfasalazine is an anti-inflammatory and immune-modulating drug that is used in rheumatology and inflammatory bowel disease. Its anti-inflammatory and immunomodulatory properties prompted us to test the ability of sulfasalazine to promote remyelination. In this study, we found that sulfasalazine promotes remyelination in the CNS of a transgenic zebrafish model of NTR/MTZ-induced demyelination. We also found that sulfasalazine treatment reduced the number of macrophages/microglia in the CNS of demyelinated zebrafish larvae, suggesting that the acceleration of remyelination is mediated by the immunomodulatory function of sulfasalazine. Our data suggest that temporal modulation of the immune response by sulfasalazine can be used to overcome MS by enhancing myelin repair and remyelination in the CNS.

γ-Aminobutyric Acid Metabolism in Plant under Environment Stressses

  • Ham, Tae-Ho;Chu, Sang-Ho;Han, Sang-Jun;Ryu, Su-Noh
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.2
    • /
    • pp.144-150
    • /
    • 2012
  • ${\gamma}$-Aminobutyric acid (GABA) is a non-protein amino acid that is widely distributed in plant and animal kingdom. GABA is found in tissues of the central nervous system (CNS) in animals. GABA functions as a the major inhibitory neurotransmitter in the CNS by acting through the GABA receptors. Clinical studies have revealed the relationship between an increased intake of GABA or analogues with several health benefits, including lowering of blood pressure in mildly hypertensive animals and humans. Furthermore, GABA would also has an inhibitory effect on cancer cell proliferation, stimulates cancer cell apoptosis and plays a role in alcohol-associated diseases and schizophrenia. In plants, interest in the GABA emerged mainly from experimental observations that GABA is largely and rapidly produced in large amounts in response to biotic and abiotic stresses. In this study, we speculated the properties and metabolism of GABA in plant and functions in relation to the responses to environmental stresses.

Signaling Pathways Controlling Microglia Chemotaxis

  • Fan, Yang;Xie, Lirui;Chung, Chang Y.
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.163-168
    • /
    • 2017
  • Microglia are the primary resident immune cells of the central nervous system (CNS). They are the first line of defense of the brain's innate immune response against infection, injury, and diseases. Microglia respond to extracellular signals and engulf unwanted neuronal debris by phagocytosis, thereby maintaining normal cellular homeostasis in the CNS. Pathological stimuli such as neuronal injury induce transformation and activation of resting microglia with ramified morphology into a motile amoeboid form and activated microglia chemotax toward lesion site. This review outlines the current research on microglial activation and chemotaxis.

The Effects of the Ginseng Butanol Fraction which Influences Spontaneous Activity by CNS Drugs in Mice (인삼(人蔘) Butanol 분획(分劃)이 중추작용(中樞作用) 약물(藥物)에 의한 Mouse의 자발(自發) 운동(運動)의 변화(變化)에 미치는 영향에 대한 연구(硏究))

  • Ko, Geun-Il;Kim, Jae-Baek
    • Journal of Pharmaceutical Investigation
    • /
    • v.9 no.4
    • /
    • pp.13-22
    • /
    • 1979
  • Panax Ginseng C. A. Meyer which has been known for more than 2000 years, occupies a particular place in folk medicine as so called tonic remedy. The brief pharmacological action of Ginseng complied from the numerous reports can be summarized as adaptogenic effect to be increased nonspecific resistance. Among the various components of Ginseng, the effective components has been known Ginseng butanol fraction as so called Ginseng saponin. In order to study on the effect of the Ginseng butanol fraction which influences spontaneous activity by CNS drugs in mice. Experiment of response was measured the change of spontaneous activity by CNS drugs in which mice were treated Ginseng butanol fraction. A method of measuring spontaneous activity in mice used by counting the number of times which were interrupted a beam of light. Results of experiment can be summarized as follows: 1. In case of administrating Ginseng butanol fraction for 1 day, stimulating effect of Ginseng was observed in spontaneous activity by caffeine in comparison with the control. at the first, but after 45 minutes no significant change was observed. 2. In case of administrating Ginseng butanol, fraction for 5days, decreasing tendency was observed in spontaneous activity by caffeine. 3. In case of administrating Ginseng butanol fraction for 10days, marked decrease was observed in spontaneous activity by caffeine in comparison with the control. From the experiment on the increased dose of caffeine, nonsignificant change was observed in comparison with caffeine and sodium benzoate 25mg/kg group. 4. A state of increased resistance was lasted until 5 days, and after 10 days it was disappeared. 5. Otherwise, nonsignificant change was observed for chlorpromazin HCl in comparison with the control. 6. From this result, 10 days administrating of ginseng butanol fraction appeared to have increased resistance in mice against caffeine.

  • PDF

Molecular Mechanisms of Microglial Deactivation by $TGF-{\beta}-inducible$ Protein ${\beta}ig-h3$

  • Kim, Mi-Ok;Lee, Eun-Joo H.
    • Animal cells and systems
    • /
    • v.9 no.2
    • /
    • pp.101-105
    • /
    • 2005
  • [ ${\beta}ig-h3$ ] is a secretory protein that is induced by $TGF-{\beta}$ and implicated in various disease conditions including fibrosis. We have previously reported that ${\beta}ig-h3$ expression is implicated in astrocyte response to brain injury. In this study, we further investigated potential roles of ${\beta}ig-h3$ protein in the injured central nervous system (CNS). We specifically assessed whether the treatment of microglial cells with ${\beta}ig-h3$ can regulate microglial activity. Microglial cells are the prime effector cells in CNS immune and inflammatory responses. When activated, they produce a number of inflammatory mediators, which can promote neuronal injury. We prepared conditioned medium from the stable CHO cell line transfected with human ${\beta}ig-h3$ cDNA. We then examined the effects of the conditioned medium on the LPS- or $IFN-{\gamma}-mediated$ induction of proinflammatory molecules in microglial cells. Preincubation with the conditioned medium significantly attenuated LPS-mediated upregulation of $TNF-{\alpha},\;IL-1{\beta}$, iNOS and COX-2 mRNA expression in BV2 murine microglial cells. It also reduced $IFN-{\gamma}-mediated$ upregulation of $TNF-{\alpha}$ and COX-2 mRNA expression but not iNOS mRNA expression. Assays of nitric oxide release correlated with the mRNA data, which showed selective inhibition of LPS-mediated nitric oxide production. Although the regulatory mechanisms need to be further investigated, these results suggest that astrocyte-derived ${\beta}ig-h3$ may contribute to protection of the CNS from immune-mediated damage via controlling microglial inflammatory responses.

Host Cellular Response during Enterohaemorrhagic Escherichia coli Shiga Toxin Exposure

  • Kyung-Soo, Lee;Seo Young, Park;Moo-Seung, Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.441-456
    • /
    • 2022
  • Shiga toxins (Stxs) are major virulence factors from the enterohemorrhagic Escherichia coli (EHEC), a subset of Stx-producing Escherichia coli. Stxs are multi-functional, ribosome-inactivating proteins that underpin the development of hemolytic uremic syndrome (HUS) and central nervous system (CNS) damage. Currently, therapeutic options for the treatment of diseases caused by Stxs are limited and unsatisfactory. Furthermore, the pathophysiological mechanisms underpinning toxin-induced inflammation remain unclear. Numerous works have demonstrated that the various host ribotoxic stress-induced targets including p38 mitogen-activated protein kinase, its downstream substrate Mitogen-activated protein kinase-activated protein kinase 2, and apoptotic signaling via ER-stress sensors are activated in many different susceptible cell types following the regular retrograde transportation of the Stxs, eventually leading to disturbing intercellular communication. Therapeutic options targeting host cellular pathways induced by Stxs may represent a promising strategy for intervention in Stx-mediated acute renal dysfunction, retinal damage, and CNS damage. This review aims at fostering an in-depth understanding of EHEC Stxs-mediated pathogenesis through the toxin-host interactions.

Carbon Monoxide as a Novel Central Pyrogenic Mediator

  • Jang, Choon-Gon;Lee, Seung-Jin;Yang, Sang-In;Kim, Jin-Hak;Sohn, Uy-Dong;Lee, Seok-Yong
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.343-348
    • /
    • 2002
  • Carbon monoxide (CO) are produced by heme oxygenase (HO), and HO was detected in hypothalamus. However, the roles of CO produced in hypothalamus was not fully elucidated. So, we tested the effects of CO on body temperature because preoptic-anterior hypothalamus was known as the presumptive primary fever-producing site. CO-saturated aCSF ($4{\;}{\mu}l$, i.c.v.) and hemin ($10{\;}{\mu}g$, i.c.v.) elicited marked febrile response. Pretreatment with indomethacin completely inhibited CO- and hemin-induced fever. Zinc protoporphyrin-IX ($10{\;}{\mu}g$, i.c.v.) or ODQ ($50{\;}{\mu}g$, i.c.v.) partially reduced hemin-induced febrile response. Dibutyryl-cGMP ($100{\;}{\mu}g$, i.c.v.) produced profound febrile response and this febrile response was attenuated by indomethacin. These results indicate that endogenous CO may have a role as a pyrogenic mediator in CNS and CO-mediated pyresis is dependent on prostaglandin production and partially on activation of soluble guanylate cyclase.

Naringenin modulates GABA mediated response in a sex-dependent manner in substantia gelatinosa neurons of trigeminal subnucleus caudalis in immature mice

  • Seon Ah Park;Thao Thi Phuong Nguyen;Soo Joung Park;Seong Kyu Han
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.73-81
    • /
    • 2024
  • The substantia gelatinosa (SG) within the trigeminal subnucleus caudalis (Vc) is recognized as a pivotal site of integrating and modulating afferent fibers carrying orofacial nociceptive information. Although naringenin (4',5,7-thrihydroxyflavanone), a natural bioflavonoid, has been proven to possess various biological effects in the central nervous system (CNS), the activity of naringenin at the orofacial nociceptive site has not been reported yet. In this study, we explored the influence of naringenin on GABA response in SG neurons of Vc using whole-cell patch-clamp technique. The application of GABA in a bath induced two forms of GABA responses: slow and fast. Naringenin enhanced both amplitude and area under curve (AUC) of GABA-mediated responses in 57% (12/21) of tested neurons while decreasing both parameters in 33% (7/21) of neurons. The enhancing or suppressing effect of naringenin on GABA response have been observed, with enhancement occurring when the GABA response was slow, and suppression when it was fast. Furthermore, both the enhancement of slower GABA responses and the suppression of faster GABA responses by naringenin were concentration dependent. Interestingly, the nature of GABA response was also found to be sex-dependent. A majority of SG neurons from juvenile female mice exhibited slower GABA responses, whereas those from juvenile males predominantly displayed faster GABA responses. Taken together, this study indicates that naringenin plays a partial role in modulating orofacial nociception and may hold promise as a therapeutic target for treating orofacial pain, with effects that vary according to sex.