• Title/Summary/Keyword: CNPC

Search Result 24, Processing Time 0.018 seconds

A Study on Heat Resistance of High Temperature Resistant Coating

  • Zhang, Liping;Wang, Xueying;Zhang, Qibin;Qin, Yanlong;Lin, Zhu
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.60-63
    • /
    • 2005
  • A high temperature resistant coating has been developed, which is mainly for heavy oil production pipes deserved the serious corrosion. The coating has excellent physical and mechanical performance and corrosion resistance at room and high temperature. In order to simulate the underground working condition of heavy oil pipes, the heat resistance of the high temperature resistant coating has been studied. The development and a study on the heat resistance of the DHT high temperature resistance coating have been introduced in this paper.

The Development and Application of a External Coating for Buried Pipeline Rehabilitation

  • Zhang, Liping;Lin, Zhu;Zhang, Qibin;Qin, Yanlong;Wang, Xueying
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.161-163
    • /
    • 2003
  • With the development of Chinese petroleum and gas industry, about 20,000 km long-distance pipeline and 250,000 km gathering pipeline have been constructed in China. After operating for many years, most of the coatings on buried pipelines have aged so severe that the steel pipes are subject to corrosion environment underground. Focusing on the need of external coating for buried pipeline rehabilitation, a new type of coating has been developed. The development and application of the coatings has been introduced in this paper.

Remote sensing and GIS technologies for route selection of 'West-East Nature Gas pipeline'

  • Zhu Xiaoge;Zhang Yaoyan;Zhang Yiming;Van Hu;Shihong Wang
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.28-30
    • /
    • 2004
  • The West-East Nature Gas Pipeline is a great project in China. Advanced remote sensing technology combined with GIS and GPS is used to select the favorable plan from various possible routes through interpreting the information of topographic landform, regional geology, disaster geology, traffic conditions and nature environment from remote sensing images. There are a lot of changes in geographical and environmental factors along such pipelines due to the rapid development in China. Image maps produced from new satellite data can identify these changes and be used successfully not only on route-selection studies but also on in situ investigation, together with GPS. Results from detail analysis provide necessary information and parameters for plan, design and construction of the pipeline and they are also the basic data for the pipeline database. The set of techniques has been applied on planning and designing several pipelines successfully.

  • PDF

The Research and Application of Protective Coating for PCCP

  • Lin, Zhu;Xu, Cuizhu;Zhang, Li;Fan, Yunpeng;Zhang, Qibin
    • Corrosion Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.265-268
    • /
    • 2008
  • Prestressed Concrete Cylinder Pipe(PCCP) had became one of the dominating kinds of pipes substituting for steel pipes because of its unique feature (high intensity, high pressure and high leakproofness). PCCP was produced firstly by Bonna company in France. By the end of 20th century, there were over 19000 km of this product installed in America. PCCP was introduced from Ameron company by Shandong Eletric Power Pipeline Engineering Company in 1988. As the statistical data in 2002, 700 km of PCCP had been applied in China, and the application trended towards rapid increase.Since prestressing wire would be corroded in environment, Several accidents due to the breakdown of pipe had happened. Consequently the external wall of pipe should be covered with protective coatings. There was a lack of technical study in corrosion and control of PCCP, because PCCP had been applied for a short time in China. in order to ensure the service life of PCCP, we have developed a kind of protective coating for concrete pipe, which had high intensity and anti-corrosive property with convenient applicability. The physical and chemical properties, painting technology and field application of this coating was introduced in the paper, at the same time, the future of external protective coating for PCCP was looked into.

Technology Trends and Performance Evaluation for Unmanned Aircraft System Datalink (무인 항공 시스템 데이터링크 기술 동향 및 성능 분석)

  • Hwang, Hyunsu;Jung, Yongcheol;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.329-335
    • /
    • 2016
  • Unmanned aircraft systems (UAS) are defined as the system whose components include the necessary equipment, network, and personnel to control an unmanned aircraft. In the past, UAS were predominately operated for military operations. However, nowadays, the applications of UAS to commercial area are explosively augmented and UAS are being expected to be integrated in national airspace. Therefore, the need for the standardized datalink systems rapidly and the development of control and non-payload communication (CNPC) system are being processed for integration in national airspace in United States and Europe. In this paper, the technology trends for UAS CNPC datalink are explained and presented the performance evaluation results for CNPC system, which is the modified version of IEEE 802.15.4 ZigBee system.

A Study on Drag Reduction Agency for Gas Pipeline

  • Zhang Qibin;Fan Yunpeng;Lin Zhu;Zhang Li;Xu Cuizhu;Han Wenli
    • Corrosion Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.283-287
    • /
    • 2008
  • The drag reduction agency (DRA) for gas pipeline, a novel method used for reducing friction or drag on a gas flowing to increase the transmission efficiency of gas pipeline, is a more flexible and economical technology than internal flow efficient coatings. In this paper, an effective DRA has been developed in Authors' Institute by analyzing the hydrodynamic friction resistance on internal gas pipeline and then studying the work mechanism and molecular structure of DRA. In the meantime, a group of property test for selecting DRA material has been determined, including viscosity, contact angle, volatility, corrosion, slab extending, and flow behavior in horizontal tube. The inhibition efficiency and drag reduction efficiency of the developed DRA have been investigated finally based on the relevant test methods. Results of corrosion test show that the developed DRA has very good inhibition effect on mild steel by brushing a thin layer of DRA on steel specimens, giving inhibition efficiency of 91.2% and 73.1% in 3%NaCl solution and standard salt fog environment respectively. Results of drag-reducing test also show that the Colebrook formula could be used to calculate friction factors on internal pipes with DRA as the Reynolds number is in the range of $0.75\times10^5\sim2.0\times10^5$. By comparing with normal industrial pipes, the friction resistance coefficient of the steel pipe with DRA on internal wall decreases by 13% and the gas flux increases by 7.3% in testing condition with Reynolds number of $2.0\times10^5$.

Testing Investigation of Protective Coatings for Downhole Oil Tube

  • Zhang, Liping;Zhang, Qibin;Zhang, Yanjun;Xie, Beibei;Zhang, Yingying
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.13-15
    • /
    • 2008
  • Aiming at the corrosion circumstances and corrosion prevention needs of downhole oil tubes, series protective coatings for downhole oil tubes have been developed in the authors' laboratory, including a baked type coating YG-01 and an air curing type coating YG-03, etc. The performance investigation of the coatings has been done for testing their corrosion resistance, mainly including salt fog test, immersion test in oil-field waste water and various acid solutions, high temperature and high pressure test in alkali solution or $H_2S/CO_2$ environment, as well as some other performances. The investigation results show that oil tube anti-corrosion coatings developed here can endure over 4000 hrs salt fog test, over 1000 hrs immersion in various acid solutions at room temperature and in boiling oil-field waste water. In addition, the coatings can keep intact after experiencing test in alkali solution under 70 MPa pressure at $150^{\circ}C$ for 24 hrs, and in simulative sour gas environment under the total pressure of 32 MPa ($P_{H_{2}S}=3.2MPa$, $P_{CO_{2}}=3.2MPa$) at $90^{\circ}C$ for 168 hrs, which show that the coatings can be used for corrosion prevention in downhole environments with specific high temperature and high pressure, such as sour gas wells. The other testing results show the oil tube protective coatings have excellent comprehensive performance.

Study on Corrosion Law of Large Crude Oil Storage Tank Floor and Risk-Based Inspection and Maintenance Technology

  • Luo, Fang-Wei;Ran, Ran;Wang, Lei
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.66-74
    • /
    • 2020
  • In this paper, the author's team has carried out a comparative experimental study on the corrosion characteristics of Q235 steel commonly used in large-scale storage tanks under the specific bottom water environment found with Russian and Daqing crude oil. It was found that there is a certain degree of uniform or local corrosion on the tank floor depending on the kind of bottom water. The bottom water corrosion of Daqing crude oil is a uniform corrosion caused by carbon dioxide. While the Russian crude oil bottom water corrosion is clearly local corrosion caused by co-corrosion of carbon dioxide and hydrogen sulfide, here the corrosion rate is obviously higher than that caused by Daqing crude oil. There are two modes of storage tank inspection and maintenance that have been currently adopted by Chinese refining and chemical enterprises: a regular inspection mode and a API581-2016 risk-based detection mode. These modes have been effectively combined to form an intelligent tank inspection and maintenance mode, software tools to support this intelligent inspection and maintenance management have been developed.

Spectral Analysis of $CO_2$ Corrosion Product Scales on 13Cr Tubing Steel

  • Lin, Guan-fa;Xu, Xun-yuan;Bai, Zhen-quan;Feng, Yao-rong
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.201-207
    • /
    • 2008
  • $CO_2$ corrosion product scales formed on 13 Cr tubing steel in autoclave and in the simulated corrosion environment of oil field are investigated in the paper. The surface and cross-section profiles of the scales were observed by scanning electron microscopy (SEM), the chemical compositions of the scales were analyzed using energy dispersion analyzer of X-ray (EDAX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to confirm the corrosion mechanism of the 13 Cr steel in the simulated $CO_2$ corrosion environment. The results show that the corrosion scales are formed by the way of fashion corrosion, consist mainly of four elements, i.e. Fe, Cr, C and O, and with a double-layer structure, in which the surface layer is constituted of bulky and incompact crystals of $FeCO_3$, and the inner layer is composed of compact fine $FeCO_3$ crystals and amorphous $Cr(OH)_3$. Because of the characteristics of compactness and ionic permeating selectivity of the inner layer of the corrosion product scales, 13 Cr steel is more resistant in $CO_2$ corrosion environment.

Characteristics of waterflood at low rate in low permeability sandstones based on the CT scanning

  • Mo, S.Y.;Lei, Q.;Lei, G.;Gai, S.H.;Liu, Z.K.
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.344-351
    • /
    • 2018
  • It is reported that the flooding rate in low permeability sandstones is low and the oil recovery is hard to increase after water breakthrough. Understanding characteristics of waterflood is hence important for the recovery improvement. In this work, flooding tests on low permeability sandstones were conducted. The corresponding flooding characteristics were investigated by means of CT scanning and Nuclear Magnetic Resonance. Effects of irreducible water and different rates were also discussed in detail. Experimental results reveal a piston-like displacement at a low rate in low permeability samples. The saturation profile is steep and almost vertical to the forward direction. The results at a low rate confirm that once water broke through, increasing the flooding rate or flooding time can hardly reduce the remaining oil inside the sample. It is probably due to the high pore-throat ratio proven by rate-controlled mercury. Results also confirm that the presence of initial water enhanced sweep efficiency substantially. On one hand, because water had previously occupied the small pores, the subsequent oil can only invade relatively large pores and became more movable. On the other hand, stable collars can not form due to the steep front, which may suppress the snap-off.