• Title/Summary/Keyword: CNN-LSTM Neural Network

Search Result 111, Processing Time 0.027 seconds

Temperature distribution prediction in longitudinal ballastless slab track with various neural network methods

  • Hanlin Liu;Wenhao Yuan;Rui Zhou;Yanliang Du;Jingmang Xu;Rong Chen
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.83-99
    • /
    • 2023
  • The temperature prediction approaches of three important locations in an operational longitudinal slab track-bridge structure by using three typical neural network methods based on the field measuring platform of four meteorological factors and internal temperature. The measurement experiment of four meteorological factors (e.g., ambient temperature, solar radiation, wind speed, and humidity) temperature in the three locations of the longitudinal slab and base plate of three important locations (e.g., mid-span, beam end, and Wide-Narrow Joint) were conducted, and then their characteristics were analyzed, respectively. Furthermore, temperature prediction effects of three locations under five various meteorological conditions are tested by using three neural network methods, respectively, including the Artificial Neural Network (ANN), the Long Short-Term Memory (LSTM), and the Convolutional Neural Network (CNN). More importantly, the predicted effects of solar radiation in four meteorological factors could be identified with three indicators (e.g., Root Means Square Error, Mean Absolute Error, Correlation Coefficient of R2). In addition, the LSTM method shows the best performance, while the CNN method has the best prediction effect by only considering a single meteorological factor.

Long-term runoff simulation using rainfall LSTM-MLP artificial neural network ensemble (LSTM - MLP 인공신경망 앙상블을 이용한 장기 강우유출모의)

  • An, Sungwook;Kang, Dongho;Sung, Janghyun;Kim, Byungsik
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.127-137
    • /
    • 2024
  • Physical models, which are often used for water resource management, are difficult to build and operate with input data and may involve the subjective views of users. In recent years, research using data-driven models such as machine learning has been actively conducted to compensate for these problems in the field of water resources, and in this study, an artificial neural network was used to simulate long-term rainfall runoff in the Osipcheon watershed in Samcheok-si, Gangwon-do. For this purpose, three input data groups (meteorological observations, daily precipitation and potential evapotranspiration, and daily precipitation - potential evapotranspiration) were constructed from meteorological data, and the results of training the LSTM (Long Short-term Memory) artificial neural network model were compared and analyzed. As a result, the performance of LSTM-Model 1 using only meteorological observations was the highest, and six LSTM-MLP ensemble models with MLP artificial neural networks were built to simulate long-term runoff in the Fifty Thousand Watershed. The comparison between the LSTM and LSTM-MLP models showed that both models had generally similar results, but the MAE, MSE, and RMSE of LSTM-MLP were reduced compared to LSTM, especially in the low-flow part. As the results of LSTM-MLP show an improvement in the low-flow part, it is judged that in the future, in addition to the LSTM-MLP model, various ensemble models such as CNN can be used to build physical models and create sulfur curves in large basins that take a long time to run and unmeasured basins that lack input data.

Text Classification on Social Network Platforms Based on Deep Learning Models

  • YA, Chen;Tan, Juan;Hoekyung, Jung
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • The natural language on social network platforms has a certain front-to-back dependency in structure, and the direct conversion of Chinese text into a vector makes the dimensionality very high, thereby resulting in the low accuracy of existing text classification methods. To this end, this study establishes a deep learning model that combines a big data ultra-deep convolutional neural network (UDCNN) and long short-term memory network (LSTM). The deep structure of UDCNN is used to extract the features of text vector classification. The LSTM stores historical information to extract the context dependency of long texts, and word embedding is introduced to convert the text into low-dimensional vectors. Experiments are conducted on the social network platforms Sogou corpus and the University HowNet Chinese corpus. The research results show that compared with CNN + rand, LSTM, and other models, the neural network deep learning hybrid model can effectively improve the accuracy of text classification.

Predicting Stock Prices Based on Online News Content and Technical Indicators by Combinatorial Analysis Using CNN and LSTM with Self-attention

  • Sang Hyung Jung;Gyo Jung Gu;Dongsung Kim;Jong Woo Kim
    • Asia pacific journal of information systems
    • /
    • v.30 no.4
    • /
    • pp.719-740
    • /
    • 2020
  • The stock market changes continuously as new information emerges, affecting the judgments of investors. Online news articles are valued as a traditional window to inform investors about various information that affects the stock market. This paper proposed new ways to utilize online news articles with technical indicators. The suggested hybrid model consists of three models. First, a self-attention-based convolutional neural network (CNN) model, considered to be better in interpreting the semantics of long texts, uses news content as inputs. Second, a self-attention-based, bi-long short-term memory (bi-LSTM) neural network model for short texts utilizes news titles as inputs. Third, a bi-LSTM model, considered to be better in analyzing context information and time-series models, uses 19 technical indicators as inputs. We used news articles from the previous day and technical indicators from the past seven days to predict the share price of the next day. An experiment was performed with Korean stock market data and news articles from 33 top companies over three years. Through this experiment, our proposed model showed better performance than previous approaches, which have mainly focused on news titles. This paper demonstrated that news titles and content should be treated in different ways for superior stock price prediction.

Analysis of Odor Data Based on Mixed Neural Network of CNNs and LSTM Hybrid Model

  • Sang-Bum Kim;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.464-469
    • /
    • 2023
  • As modern society develops, the number of diseases caused by bad smells is increasing. As it can harm people's health, it is important to predict in advance the extent to which bad smells may occur, inform the public about this, and take preventive measures. In this paper, we propose a hybrid neural network structure of CNN and LSTM that can be used to detect or predict the occurrence of odors, which are most required in manufacturing or real life, using odor complex sensors. In addition, the proposed learning model uses a complex odor sensor to receive four types of data, including hydrogen sulfide, ammonia, benzene, and toluene, in real time, and applies this data to the inference model to detect and predict the odor state. The proposed model evaluated the prediction accuracy of the training model through performance indicators based on accuracy, and the evaluation results showed an average performance of more than 94%.

CNN-LSTM based Wind Power Prediction System to Improve Accuracy (정확도 향상을 위한 CNN-LSTM 기반 풍력발전 예측 시스템)

  • Park, Rae-Jin;Kang, Sungwoo;Lee, Jaehyeong;Jung, Seungmin
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.18-25
    • /
    • 2022
  • In this study, we propose a wind power generation prediction system that applies machine learning and data mining to predict wind power generation. This system increases the utilization rate of new and renewable energy sources. For time-series data, the data set was established by measuring wind speed, wind generation, and environmental factors influencing the wind speed. The data set was pre-processed so that it could be applied appropriately to the model. The prediction system applied the CNN (Convolutional Neural Network) to the data mining process and then used the LSTM (Long Short-Term Memory) to learn and make predictions. The preciseness of the proposed system is verified by comparing the prediction data with the actual data, according to the presence or absence of data mining in the model of the prediction system.

1D-CNN-LSTM Hybrid-Model-Based Pet Behavior Recognition through Wearable Sensor Data Augmentation

  • Hyungju Kim;Nammee Moon
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.159-172
    • /
    • 2024
  • The number of healthcare products available for pets has increased in recent times, which has prompted active research into wearable devices for pets. However, the data collected through such devices are limited by outliers and missing values owing to the anomalous and irregular characteristics of pets. Hence, we propose pet behavior recognition based on a hybrid one-dimensional convolutional neural network (CNN) and long short- term memory (LSTM) model using pet wearable devices. An Arduino-based pet wearable device was first fabricated to collect data for behavior recognition, where gyroscope and accelerometer values were collected using the device. Then, data augmentation was performed after replacing any missing values and outliers via preprocessing. At this time, the behaviors were classified into five types. To prevent bias from specific actions in the data augmentation, the number of datasets was compared and balanced, and CNN-LSTM-based deep learning was performed. The five subdivided behaviors and overall performance were then evaluated, and the overall accuracy of behavior recognition was found to be about 88.76%.

Korean Sentiment Analysis Using Natural Network: Based on IKEA Review Data

  • Sim, YuJeong;Yun, Dai Yeol;Hwang, Chi-gon;Moon, Seok-Jae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.173-178
    • /
    • 2021
  • In this paper, we find a suitable methodology for Korean Sentiment Analysis through a comparative experiment in which methods of embedding and natural network models are learned at the highest accuracy and fastest speed. The embedding method compares word embeddeding and Word2Vec. The model compares and experiments representative neural network models CNN, RNN, LSTM, GRU, Bi-LSTM and Bi-GRU with IKEA review data. Experiments show that Word2Vec and BiGRU had the highest accuracy and second fastest speed with 94.23% accuracy and 42.30 seconds speed. Word2Vec and GRU were found to have the third highest accuracy and fastest speed with 92.53% accuracy and 26.75 seconds speed.

Sentiment Orientation Using Deep Learning Sequential and Bidirectional Models

  • Alyamani, Hasan J.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.23-30
    • /
    • 2021
  • Sentiment Analysis has become very important field of research because posting of reviews is becoming a trend. Supervised, unsupervised and semi supervised machine learning methods done lot of work to mine this data. Feature engineering is complex and technical part of machine learning. Deep learning is a new trend, where this laborious work can be done automatically. Many researchers have done many works on Deep learning Convolutional Neural Network (CNN) and Long Shor Term Memory (LSTM) Neural Network. These requires high processing speed and memory. Here author suggested two models simple & bidirectional deep leaning, which can work on text data with normal processing speed. At end both models are compared and found bidirectional model is best, because simple model achieve 50% accuracy and bidirectional deep learning model achieve 99% accuracy on trained data while 78% accuracy on test data. But this is based on 10-epochs and 40-batch size. This accuracy can also be increased by making different attempts on epochs and batch size.

Combining 2D CNN and Bidirectional LSTM to Consider Spatio-Temporal Features in Crop Classification (작물 분류에서 시공간 특징을 고려하기 위한 2D CNN과 양방향 LSTM의 결합)

  • Kwak, Geun-Ho;Park, Min-Gyu;Park, Chan-Won;Lee, Kyung-Do;Na, Sang-Il;Ahn, Ho-Yong;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.681-692
    • /
    • 2019
  • In this paper, a hybrid deep learning model, called 2D convolution with bidirectional long short-term memory (2DCBLSTM), is presented that can effectively combine both spatial and temporal features for crop classification. In the proposed model, 2D convolution operators are first applied to extract spatial features of crops and the extracted spatial features are then used as inputs for a bidirectional LSTM model that can effectively process temporal features. To evaluate the classification performance of the proposed model, a case study of crop classification was carried out using multi-temporal unmanned aerial vehicle images acquired in Anbandegi, Korea. For comparison purposes, we applied conventional deep learning models including two-dimensional convolutional neural network (CNN) using spatial features, LSTM using temporal features, and three-dimensional CNN using spatio-temporal features. Through the impact analysis of hyper-parameters on the classification performance, the use of both spatial and temporal features greatly reduced misclassification patterns of crops and the proposed hybrid model showed the best classification accuracy, compared to the conventional deep learning models that considered either spatial features or temporal features. Therefore, it is expected that the proposed model can be effectively applied to crop classification owing to its ability to consider spatio-temporal features of crops.