• Title/Summary/Keyword: CNC 밀링 가공

Search Result 41, Processing Time 0.02 seconds

A Study on the CNC Milling Machining of Thin-wall Part (범용 CNC 밀링에 의한 박막 측벽 파트 가공에 관한 연구)

  • 지성희;이동주;신보성;최두선;제태진;이응숙
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.83-88
    • /
    • 2001
  • In order to suggest the proper optimal conditions of the CNC milling machining for the Thin-wall surface, some experiments were carried out. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. And the end mill is an important tool in the milling process. A typical example for the end mill is the milling of pocket and slot in which a lot of material is removed from the workpiece. Therefore the proper selection of cutting parameter for end milling is one of the important factors affecting the cutting cost. In this paper, we choose the optimal parameters(cutting forces) to cut thin-walled Al part by experiment.

  • PDF

Effect of Cutting Conditions on Surface Roughness in CNC Lathe C-axis Milling Cutting (CNC선반 C축 밀링가공에서 표면 거칠기에 미치는 절삭조건의 영향)

  • Shin, Kuk-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.110-115
    • /
    • 2012
  • For domestic aircraft industry, not mass production of components is limited, small production scale of the order is made by part because many kinds of hundreds of thousands of kinds of small quantity batch production system are taking. But the high reliability and stability are required during the processing because they require high precision parts are required. It is found that when C-axis rotation speed was increased, the diameter of the cutting tool decreased with increasing surface roughness, while the turn-mail feed rate was increased with increasing the surface roughness.

A Study on the Accuracy of Dental Abutments Manufactured by the Dental CAD/CAM Round Bar Milling Method and CNC Milling Machine (치과용 CAD/CAM 환봉밀링 방식과 CNC 밀링기를 통해 제작된 치과용 어버트먼트의 적합 정밀도 분석)

  • JUNG SOOK KIM
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.67-71
    • /
    • 2023
  • Recently, the method of making a dental prothesis is changed in the ICT based digital way. In particular, with the emergence of the CAD/CAM or 3D printing for dental purpose, a computer based digital type is selected gradually more than an analog type. To make an implant abutment, it is possible to apply the conventional technique of making round bars, or the technique using a CNC milling machine. This study tested these two types of the techniques to find which one had more precision and a smaller error when the margin and occlusal surface was made. According to the test, the technique using a CNC milling machine to make an implant abutment had a small error and supported precise processing in terms of the margin fit and the occlusal surface. Therefore, it was found to be useful in making a custom-made prothesis.

Effect of Surface Roughness on Cutting Conditions in CNC lathe C-Axis Milling Arc Cutting (CNC선반 C축 밀링 원호가공에서 절삭조건이 표면 거칠기에 미치는 영향)

  • Shin, Kuk-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.99-105
    • /
    • 2014
  • The domestic airline industry undertakes the production of finished products by assembling existing self-described components via a design process which involves assembly and production steps, after which many of the finished products are exported. However, high reliability and stability must be guaranteed, because customers require high-precision components at the time of manufacturing. In the aircraft parts industry, the mass production of high-value-added parts is limited. Therefore, a small production scale depending on the part is used, as many types of conventional CNC lathe machines with X-axis and Z-axis as well as Z-axis and C-axis CNC milling are used. The parts also rely on high-pressure air to increase production. The most important factors are good stability during processing, as high-precision parts are required, as noted above. It was found that as the C-axis rotation speed increased, the diameter of the cutting tool decreased with a decrease in the surface roughness, while the workpiece rotation speed increased with an increase in the surface roughness.

A Vibration Analysis for the Main-Spindle of a Holder in the 3-Axis CNC Tool Turret (3축 CNC 공구터렛의 홀더 주축 진동해석)

  • 이재환;김재실;이종판;추광식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.153-157
    • /
    • 2002
  • 본 연구에서는 선반가공에서 일반적인 선반작업 후 밀링이나 드릴링 가공이 가능한 복합가공기의 역할을 한번에 수행할 수 있는 CNC 공구터렛의 홀더 주축에 대한 수학적 모델링을 통하여 시스템의 횡진동 및 비틀림 진동 해석으로 발생할 수 있는 진동 문제에 대처할 수 있는 방안을 제시 하고자 한다.

  • PDF

The Effect of Surface Roughness on Cutting Tool Shape in CNC Lathe C-Axis Turn-mill Machining (CNC선반 C축 Turn-mill 가공에 있어서 절삭공구형상이 표면 거칠기에 미치는 영향)

  • Lee, Soon-kwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.62-68
    • /
    • 2017
  • Since the aircraft parts industry is a high-value-added industry, mass production order production, and the hundreds of thousands. Therefore, parts produced However, since these parts require high reliability and stability, a high degree of precision is required. In Korea, there on the roughness of the machined surface in cutting process. However, research on the surface roughness characteristic obtained by which is widely used for aircraft parts is still insufficient in Korea. The purpose of this study is to investigate the effect of turning tool rotation speed and X axis feed rate on the surface roughness of cutting tools in CNC lathes during cutting of aluminum alloy 7075.

Investigation of Surface Roughness Characteristics according to Tool Runout Variations in Side Milling Cutter for Worm Screw (사이드 밀링 커터를 이용한 워엄 스크루 가공에서 공구 런아웃이 표면조도에 미치는 영향분석)

  • Kim, Sun Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.76-82
    • /
    • 2009
  • A worm screw is widely used in a geared motor unit for motion conversion from rotation to linear motion. For mass production of a high quality worm, the current roll forming process is substituted with the milling cutter process. Since the milling cutter process enables the integration of all machining operations of worm manufacturing on a CNC(Computer Numerical Control) lathe, productivity can be remarkably improved. The tooling system for side milling cutter on the CNC lathe to improve machinability is developed. However, the runout of spindle and cutting tips are important factors to be considered for producing high quality worms because the tooling system has multiple tips. In this study, surface roughness variations accuracy according to runout was investigated in side milling cutter for worm screw. The result shows by simulation and experiment.

  • PDF

A Study on the characteristics of the spherical surface machining in CNC milling (CNC 밀링에 의한 구면 가공시의 가공특성에 관한 연구)

  • 한흥삼;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.52-57
    • /
    • 1995
  • In order to suggest the proper cutting conditions of the CNC milling machining for the free-from surface, some experiments were carried out. In experiments, the influence of cutting conditions on the inclined spherical surface were examined by geometrical anlysis. In thos study, the roundness and cutting force were measured to know the effect of several cutting conditions on the machined surface and the cutting characteristics were carefully investigated. As the result, it was appeared that rigidder tool must be used and the cutting speed must be maintained constantlyfor more effective machining. It can be also known from the experiments that the improved machining surface obtained under about 80 degree, but coarse surface obtained over about 80 degree because of the existance of immproper shape of ball-end mill at the extreme portion.

  • PDF

Prediction Model of CNC Processing Defects Using Machine Learning (머신러닝을 이용한 CNC 가공 불량 발생 예측 모델)

  • Han, Yong Hee
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.249-255
    • /
    • 2022
  • This study proposed an analysis framework for real-time prediction of CNC processing defects using machine learning-based models that are recently attracting attention as processing defect prediction methods, and applied it to CNC machines. Analysis shows that the XGBoost, CatBoost, and LightGBM models have the same best accuracy, precision, recall, F1 score, and AUC, of which the LightGBM model took the shortest execution time. This short run time has practical advantages such as reducing actual system deployment costs, reducing the probability of CNC machine damage due to rapid prediction of defects, and increasing overall CNC machine utilization, confirming that the LightGBM model is the most effective machine learning model for CNC machines with only basic sensors installed. In addition, it was confirmed that classification performance was maximized when an ensemble model consisting of LightGBM, ExtraTrees, k-Nearest Neighbors, and logistic regression models was applied in situations where there are no restrictions on execution time and computing power.

A Study on the Machining of Sculptured Surfaces by 5-Axis CNC Milling (ll) The Prediction of Cusp Heights and Determination of Tool Path interval (5-축 CNC 밀링으로의 자유곡면 가공에 관한 연구 (II) 커섭 높이 예측과 공구경로 결정)

  • 조현덕;전용태;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2012-2022
    • /
    • 1993
  • For the machining of the sculptured surfaces on 5-axis CNC milling machine, the milling cutter direction vector was determined in the study (I) with 5-axis post-processing. Thus, it was possible to cut the sculptured surfaces on five-axis CNC milling machine with the end mill cutter. Then, for smooth machined surfaces in five-axis machining of free-from surfaces, this study develops an algorithm for prediction of cusp heights. Also, it generates tool path such that the cusp heights are constrained to a constant value or under a certain value. For prediction of the cusp height between two basis points, a common plane, containing the line crossing two basis points and the summation vector of two normal vectors at two basis points, is defined. The cusp height is the maximum value of scallops on the common plane after end mill cutter passes through the common plane. Sculptured surfaces were machined with CINCINNATI MILACRON 5-axis machining center, model 20V-80, using end mill cutter. Cusp heights were verified by 3-dimensional measuring machine with laser scanner, WEGU Messtechnik GmbH.