• Title/Summary/Keyword: CNC가공

Search Result 378, Processing Time 0.025 seconds

Cutting Performance of Tool in work of CFRP Hole (CFRP 구멍가공 시 공구의 절삭성능에 관한 연구)

  • Shin, H.G.;Kang, G.W.;Kim, Y.C.;Moon, J.S.;Whang, S.K.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.941-946
    • /
    • 2018
  • Currently, due to the development of technology, the industry is proceeding with the development of advanced materials with high performance such as light weight, heat resistance and electric conductivity. Carbon Fiber Reinforced Plastics (CFRP) is an excellent material with high heat resistance, high strength and thermal shock resistance. In order to obtain excellent hole shape in CFRP drilling, we compared the modified drill shape and the conventional carbide drill. On the other hand, we determine the proper helix angle by observing the CFRP surface according to the helix angle at the trimming of the end mill proceeding after the hole machining.

A Study on Cutting Conditions of the Be-Cu Material in Micro Deep Hole Drilling Operation (미세심공드릴 가공에 있어서 Be-Cu 재료의 절삭조건에 관한 연구)

  • 김희남;유숙철;이형원;이원영;이종화;이인수
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.2
    • /
    • pp.117-126
    • /
    • 2000
  • Recently micro deep hole drilling is required in the whole industry. However, micro deep hole drilling has still much difficulty because of the lack of drill rigidity and the interruption of chip. We treated a micro deep hole(diameter 0.35mm, depth 3mm) used in a connector jack pin. Therefore, a surface roughness is very important. In this paper, we studied on the variation of the surface roughness for cutting conditions during micro deep hole drilling of Be-Cu material. Most of all, we tried to drill on CNC for the realization of automatization.

  • PDF

Path compensation toward direct shape control: dealing with tool deflection problem in 2D contour machining (직접형상제어를 위한 공구경로의 보상 : 2D 윤곽가공의 공구휨을 중심으로)

  • Cho, Jung-Hoon;Suh, Suk-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.97-111
    • /
    • 1995
  • In this paper, we investigate path compensation scheme for the machining errors due to tool deflection in 2D contour machining. The significance of the deflection error is first shown by experiments, and a direct compensation scheme is sought. In the presented scheme, the tool path is evaluated and correcte based on the instantaneous deflection force model, until the desired contour can be obtained under the presence of tool deflection in actual machining. In the sense that the developed method estimates and compensates the machining errors via modifying the tool path, it is distinguished from the previous approach based on geometric simulation and cutting simulation. Further, it can be viewed as a direct and active method toward direct shape control in CNC machining. Simulation results are included to show the validity and adequacy of the path-modification scheme under various cutting conditions.

  • PDF

An Evaluation of Skiving Cutting Characteristics of TiCN PACVD Coating Caribide Hob (TiCN PACVD코팅 초경호브의 Skiving절삭특성 평가)

  • Cheon, Jong-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.471-477
    • /
    • 2012
  • SCM420 steel tempered after performing gear hove PACVD carbide coating on the surface after the cutting surface hardness was high. Difficult-to-cut, without coating is classified as mild as large, including materials like mild, high strength that improves tool life and productivity have limited availability. Drive to improve it in the TiCN-coated carbide call for war to the finish coating on cutting a hob skiving good workability, tool wear less, 2.5-fold increase in tool life results were obtained. Experiments using CNC Skiving hobbing machine with wet cutting conditions, cutting speed and feed rate to apply a variety of the tool wear and surface roughness data were obtained. Results from condition 2 (V = 200m/min F = 0.7mm/rev) cutting speed feed mark the cutting surface microstructure and surface roughness Rmax $4.7{\mu}m$(Ra $1.19{\mu}m$) of the data was obtained.

A Study on Structural Safety and Advanced Efficiency for a Drywell Type Reducer (누유방지형 감속기의 구조적 안전성 및 토크효율 향상에 관한 연구)

  • Oh, Sang-Yeob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1399-1406
    • /
    • 2011
  • The reducer of the mixer is one of the main parts of the processor used for water and wastewater treatment. In this study, an advanced reducer with a drywell structure was developed in order to prevent oil leakage during operation in the field. During the development of the advanced reducer prototype, a mockup, a metal mold, and a cast were made using CAD and a CNC machine. The structural safety of the reducer prototype's lower housing (drywell structure) was checked using the ALGOR commercial FEM analysis code, which yielded a von Mises stress of about 123 N/mm2, which is below the yield stress of 250 N/$mm^2$, and a natural frequency of about 650-700 Hz. In addition, the torque transmission efficiency for the advanced prototype was 95.87%, which is about 8% more than that found in a previous study, 88.45%, and the sound level was below 75 dB. Furthermore, no oil leakage or abnormal sound or vibration occurred. Therefore, an optimally designed advanced reducer prototype has been successfully developed.

A Study on the Simulation for Prediction of Cutting Force in Milling Process (밀링가공 시 절삭력 예측을 위한 시뮬레이션 연구)

  • Beak, Seung Yub;Kong, Jung Shik;Jung, Sung Taek;Kim, Seong Hhyun;Jin, Da Som
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.353-359
    • /
    • 2017
  • The classical computer numerical control (CNC) machine is widely used for mold making in various industries. However, while improving the process, it has a negative effect on production quality and worker safety. As a result, the complaints of workers have increased and production quality has decreased. Therefore, we found optimizing cutting conditions to mold industrials for cutting conditions commonly used. However, the problem is the insert tool geometric modeling. In this study, the modeling of an insert tool was performed using the Solidworks program. The insert tool model was imported into the analysis application AdvantEdge, which predicted cutting forces, tool stress, and temperature.

A study on machining method about molybdenum alloy micro fixing part for TEM precision specimen. (TEM 정밀 시편 제작용 몰리브덴 합금 미세 고정 부품의 제작을 위한 절삭 가공 방법에 관한 연구)

  • Kim, Ki-Beom;Lee, Chang-Woo;Lee, Hae-Jin;Ham, Min-Ji;Kim, Gun-Hee
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.19-24
    • /
    • 2017
  • In these days, increase requirement of TEM (Transmission Electro Microscope) in not only scientific field but also industrial field. Because TEM can measure inner-structure of specimen a variety of materials like metal, bio. etc. When use TEM, specimen should be thin about 50nm. So making for thin specimen, use Ion milling device that include specimen holder. The holder generally made of Aluminium Aluminium holder is worn away easily. For this reason, using time of ion milling with aluminum holder is too short. To solve the problem, we replace aluminium holer to molybdenum alloy holder. In this paper, we design molybdenum alloy holer for CAM and modify CAD modeling for effective machining process. So we array a specimen 3 by 4 and setup orientation for one-shot machining process. Next we make a CAM program for machining. we making a decision two machining strategy that chose condition of tool-path method, step-down, step-over. etc. And then conduct machining using CNC milling machining center. To make clear difference between case.1 and case.2, we fixed machining conditions like feed-rate, main spindle rpm, etc. After machining, we confirm the condition of workpiece and analysis the problems case by case. Finally, case.2 work piece that superior than case.1 cutting with WEDM because that method can not ant mechanical effect on workpiece.

Machine Learning Model for Predicting the Residual Useful Lifetime of the CNC Milling Insert (공작기계의 절삭용 인서트의 잔여 유효 수명 예측 모형)

  • Won-Gun Choi;Heungseob Kim;Bong Jin Ko
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.111-118
    • /
    • 2023
  • For the implementation of a smart factory, it is necessary to collect data by connecting various sensors and devices in the manufacturing environment and to diagnose or predict failures in production facilities through data analysis. In this paper, to predict the residual useful lifetime of milling insert used for machining products in CNC machine, weight k-NN algorithm, Decision Tree, SVR, XGBoost, Random forest, 1D-CNN, and frequency spectrum based on vibration signal are investigated. As the results of the paper, the frequency spectrum does not provide a reliable criterion for an accurate prediction of the residual useful lifetime of an insert. And the weighted k-nearest neighbor algorithm performed best with an MAE of 0.0013, MSE of 0.004, and RMSE of 0.0192. This is an error of 0.001 seconds of the remaining useful lifetime of the insert predicted by the weighted-nearest neighbor algorithm, and it is considered to be a level that can be applied to actual industrial sites.

Research on the Development of Microneedle Arrays Based on Micromachining Technology and the Applicability of Parylene-C (미세가공 기술 기반의 마이크로니들 어레이 개발 및 패럴린 적용 가능성에 관한 연구)

  • Dong-Guk Kim;Deok-kyu Yoon;Yongchan Lee;Min-Uk Kim;Jihyoung Roh;Yohan Seo;Kwan-Su Kang;Young Hun Jeong;Kyung-Ah Kim;Tae-Ha Song
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.404-413
    • /
    • 2023
  • In this research, we studied the development of a SUS304 microneedle array based on microfabrication technology and the applicability of Parylene-C thin film, a medical polymer material. First of all, four materials commonly used in the field of medical engineering (SUS304, Ti, PMMA, and PEEK) were selected and a 5 ㎛ Parylene-C thin film was deposited. The applicability of Parylene-C coating to each material was confirmed through SEM analysis, contact angle measurement, surface roughness(Ra) measurement, and adhesion test according to ASTM standards for each specimen. Parylene-C thin film was deposited based on chemical vapor deposition (CVD), and a 5 ㎛ Parylene-C deposition process was established through trial and error. Through characteristic experiments to confirm the applicability of Parylene-C, SUS304 material, which is the easiest to apply Parylene-C coating without pretreatment was selected to develop a microneedle array based on CNC micromachining technology. The CNC micromachining process was divided into a total of 5 steps, and a microneedle array consisting of 19 needles with an inner diameter of 200 ㎛, an outer diameter of 400 ㎛, and a height of 1.4 mm was designed and manufactured. Finally, a 5 ㎛ Parylene-C coated microneedle array was developed, which presented future research directions in the field of microneedle-based drug delivery systems.

Development of robot system for production line automation (생산라인 자동화를 위한 로봇 시스템 개발)

  • Mim, Byeong-Ro;Kim, Duck-Ki;Jun, Yoo-Hea;Jung, Jun-Hee;Lee, Hwen;Yoo, Su-Ho;Cha, San-Lee;Lee, Dae-Weon;OH, Se-Bu
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.149-149
    • /
    • 2017
  • 본 논문은 생산라인 자동화를 위한 로봇으로 제조업 시장 확대에 가장 큰 걸림돌이 되는 가격 경쟁력 및 인력난 해소를 위해 설계하였으며 다양한 소재에 대응하기 위해 그리퍼를 교체하여 적용이 되도록 하였다. 자동화를 위한 로봇은 소재의 내외경 가공 및 검사까지 모든 공정이 일괄적으로 이루어 져야하며 LCD 모니터에 생산수량 및 불량률 등의 정보를 실시간으로 나타내어 효율적인 생산계획을 수립할 수 있도록 하였다. 생산라인 자동화를 위해 로봇의 설계는 Auto CAD를 이용하였다. 부품의 가공은 CNC에 적용하기 위해 자동공급장치를 설계하였다. 가공이 완료된 후 측정한 값을 LCD모니터를 통하여 작업자가 알아볼 수 있게 나타냈다. 외경 1은 40.405, 외경2는 32.201, 내경 1은 23.346, 내경 2는 34.302로 나타났다. 측정결과 불량 측정을 위해 측정부의 결과 값이 나타나며 불량이 발생하면 그래프를 이용하여 어떤 부위에서 발생했는지를 알 수 있도록 하였다. 또한 결과 값은 자동으로 저장되도록 하였다. 생산라인 자동화를 위해 100EA를 측정한 결과 외경 1은 40.40438, 외경2는 32.20164, 내경 1은 23.34830 내경 2는 34.30033의 평균값을 나타냈다. 측정값의 검증은 하이트게이지로 측정한 결과 0.003 이내의 결과를 나타냈다. 따라서 본 로봇 자동화 시스템을 적용한다면 생산성 향상 및 불량률 감소가 가능하여 인력대체 및 가격경쟁력이 가능하다고 판단된다.

  • PDF