• Title/Summary/Keyword: CMP Slurry

Search Result 364, Processing Time 0.021 seconds

Dishing and Erosion in Chemical Mechanical Polishing of Electroplated Copper

  • Yoon, In-Ho;Ng, Sum Huan;Hight, Robert;Zhou, Chunhong;Higgs III, C. Fred;Yao, Lily;Danyluk, Steven
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.435-437
    • /
    • 2002
  • Polishing of copper, a process called copper chemical mechanical polishing, is a critical, intermediate step in the planarization of silicon wafers. During polishing, the electrodeposited copper films are removed by slurries: and the differential polishing rates between copper and the surrounding silicon dioxide leads to a greater removal of the copper. The differential polishing develops dimples and furrows; and the process is called dishing and erosion. In this work, we present the results of experiments on dishing and erosion of copper-CMP, using patterned silicon wafers. Results are analyzed for the pattern factors and properties of the copper layers. Three types of pads - plain, perforated, and grooved - were used for polishing. The effect of slurry chemistries and pad soaking is also reported.

  • PDF

Determination of Optimal Design Level for the Semiconductor Polishing Process by Taguchi Method (다구찌 기법을 활용한 반도체 연마 공정의 최적 설계수준 결정)

  • Sim, Hyun Su;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.2
    • /
    • pp.293-306
    • /
    • 2017
  • Purpose: In this study, an optimal design level of influencing factors on semiconductor polishing process was determined to minimize flexion of both sides on wafers. Methods: First, significant interactions are determined by the stepwise regression method. ANOVA analysis on SN ratio and mean of dependent variable are performed to draw mean adjustment factors. In addition, the optimal levels of mean adjustment factors are decided by comparing means of each level of mean adjustment factors. Results: As a result of ANOVA, a mean adjustment factor was determined as a width of formed flexion on the plate. The mean of the difference has the nearest to 0 in the case when the width of formed flexion has level 2 (4mm). Conclusion: Optimal design levels of semiconductor polishing process are determined as follows; (i) load applied to the wafer carrier has a level 1 (3psi), (ii) load applied to the wafer has a level 1(3psi), (iii) the amount of slurry supplied during polishing has a level 3 (300 co/min), (iv) the width of formed flexion on the plate has level 2 (4mm).

The Influence of Plate Structure in Membrane Embedded Head Polisher (Membrane Embedded Polisher Head의 Plate 구조의 영향)

  • Cho, Gyung-Su;Lee, Yang-Won;Kim, Dae-Young;Lee, Jin-Kyu;Kim, Hwal-Pyo;Jeong, Jae-Deok;Ha, Hyeon-U;Jeong, Ho-Seok;Yang, Won-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.136-139
    • /
    • 2004
  • The requirement of planarity, such as with-in-wafer nonuniformity, post thickness range, have become increasingly stringent as critical dimensions of devices are decreased and a better control of a planarity become important. The key factors influencing the planarity capability of the CMP process have been well understood through numerous related experiments. These usually include parameters such as process pressures, relative velocities, slurry temperature, polishing pad materials and polishing head structure. Many study have been done about polishing pad and its groove structure because it's considered as one of the key factors which can decide wafer uniformity directly. But, not many study have been done about polisher head structure, especially about polisher head plate design. The purpose of this paper is to know how the plate structure can affect wafer uniformity and how to deteriorate wafer yield. Furthermore, we studied several new designed plate to improve wafer uniformity and also improve wafer yield.

  • PDF

Effect of Glycine Adsorption on Polishing of Silicon Nitride in Chemical Mechanical Planarization Process (CeO2 슬러리에서 Glycine의 흡착이 질화규소 박막의 연마특성에 미치는 영향)

  • 김태은;임건자;이종호;김주선;이해원;임대순
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.77-80
    • /
    • 2003
  • Adsorption of glycine on$Si_3N_4$powder surface has been investigated, which is supposed to enhance the formation of passive layer inhibiting oxidation in aqueous solution. In the basic solution, multinuclear surface complexing between Si and dissociated ligands was responsible for the saturated adsorption of glycine. In addition, $CeO_2$-based CMP slurry containing glycine was manufactured and then applied to planarize$SiO_2$and$Si_3N_4$thin film. Owing to the passivation by glycine, the removal rates, Rh, were decreased, however, the selectivities, RE(SiO$_2$)/RR($Si_3N_4$), increased and showed maximum at pH=12. The suppressed oxidation and dissolution by adsorbate were correlated with the dissociation behavior of glycine at different pH and subsequent chemical adsorption.