• Title/Summary/Keyword: CMOS-based circuit

Search Result 355, Processing Time 0.035 seconds

Circuit Design of a Ternary Flip-Flop Using Ternary Logic Gates

  • Kim, Jong-Heon;Hwang, Jong-Hak;Park, Seung-Young;Kim, Heung-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.347-350
    • /
    • 2000
  • We present the design of ternary flip-flop which is based on ternary logic so as to process ternary data. These flip-flops are fabricated with ternary voltage mode NOR, NAND, INVERTER gates. These logic gate circuits are designed using CMOS and obtained the characteristics of a lower voltage, a lower power consumption as compared to other gates. These circuits have been simulated with the electrical parameters of a standard 0.25 micron CMOS technology and 2.5 volts supply voltage. The Architecture of proposed ternary flip-flop is highly modular and well suited for VLSI implementation, only using ternary gates.

  • PDF

Thermo-piezoelectric $Si_3N_4$ cantilever array on n CMOS circuit for probe-based data storage using wafer-level transfer method (웨이퍼 본딩을 이용한 탐침형 정보 저장장치용 열-압전 켄틸레버 어레이)

  • Kim Young-Sik;Nam Hyo-Jin;Lee Caroline Sunyoung;Jin Won-Hyeog;Jang Seong.Soo;Cho Il-Joo;Bu Jong Uk
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.22-25
    • /
    • 2005
  • In this research, a wafar-level transfer method of cantilever array on a conventional CMOS circuit has been developed for high density probe-based data storage. The transferred cantilevers were silicon nitride ($Si_3N_4$) cantilevers integrated with poly silicon heaters and piezoelectric sensors, called thermo-piezoelectric $Si_3N_4$ cantilevers. In this process, we did not use a SOI wafer but a conventional p-type wafer for the fabrication of the thermo-piezoelectric $Si_3N_4$ cantilever arrays. Furthermore, we have developed a very simple transfer process, requiring only one step of cantilever transfer process for the integration of the CMOS wafer and cantilevers. Using this process, we have fabricated a single thermo-piezoelectric $Si_3N_4$ cantilever, and recorded 65nm data bits on a PMMA film and confirmed a charge signal at 5nm of cantilever deflection. And we have successfully applied this method to transfer 34 by 34 thermo-piezoelectric $Si_3N_4$ cantilever arrays on a CMOS wafer. We obtained reading signals from one of the cantilevers.

  • PDF

Integrated Circuit Design Based on Carbon Nanotube Field Effect Transistor

  • Kim, Yong-Bin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.175-188
    • /
    • 2011
  • As complementary metal-oxide semiconductor (CMOS) continues to scale down deeper into the nanoscale, various device non-idealities cause the I-V characteristics to be substantially different from well-tempered metal-oxide semiconductor field-effect transistors (MOSFETs). The last few years witnessed a dramatic increase in nanotechnology research, especially the nanoelectronics. These technologies vary in their maturity. Carbon nanotubes (CNTs) are at the forefront of these new materials because of the unique mechanical and electronic properties. CNTFET is the most promising technology to extend or complement traditional silicon technology due to three reasons: first, the operation principle and the device structure are similar to CMOS devices and it is possible to reuse the established CMOS design infrastructure. Second, it is also possible to reuse CMOS fabrication process. And the most important reason is that CNTFET has the best experimentally demonstrated device current carrying ability to date. This paper discusses and reviewsthe feasibility of the CNTFET's application at this point of time in integrated circuits design by investigating different types of circuit blocks considering the advantages that the CNTFETs offer.

CMOS Integrated Fingerprint Sensor Based on a Ridge Resistivity (CMOS공정으로 집적화된 저항형 지문센서)

  • Jung, Seung-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.571-574
    • /
    • 2008
  • In this paper, we propose $256{\times}256$ pixel array fingerprint sensor with an advanced circuits for detecting. The pixel level simple detection circuit converts from a small and variable sensing current to binary voltage out effectively. We minimizes an electrostatic discharge(ESD) influence by applying an effective isolation structure. The sensor circuit blocks were designed and simulated in standard CMOS $0.35{\mu}m$ process. Full custom layout is performed in the unit sensor pixel and auto placement and routing is performed in the full chip.

  • PDF

Design of a Timing Error Detector Using Built-In current Sensor (내장형 전류 감지회로를 이용한 타이밍 오류 검출기 설계)

  • Kang, Jang-Hee;Jeong, Han-Chul;Kwak, Chol-Ho;Kim, Jeong-Beom
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.12-21
    • /
    • 2004
  • Error control is one of major concerns in many electronic systems. Experience shows that most malfunctions during system operation are caused by transient faults, which often mean abnormal signal delays that may result in violations of circuit element timing constraints. This paper presents a novel CMOS-based concurrent timing error detector that makes a flip-flop to sense and then signal whether its data has been potentially corrupted or not by a setup or hold timing violation. Designed circuit performs a quiescent supply current evaluation to determine timing violation from the input changes in relation to a clock edge. If the input is too close to the clock time, the resulting switching transient current in the detection circuit exceeds a reference threshold at the instant of the clock transition and an error is flagged. The circuit is designed with a $0.25{\mu}m$ standard CMOS technology at a 2.5 V supply voltage. The validity and effectiveness are verified through the HSPICE simulation. The simulation results in this paper shows that designed circuit can be used to detect setup and hold time violations effectively in clocked circuit element.

  • PDF

A High Frequency Op-amp for High Speed Signal Processing (고속신호처리를 위한 고주파용 Op-Amp 설계)

  • 신건순
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.25-29
    • /
    • 2002
  • There is an increasing interest in high-speed signal processing in modern telecommunication and SC circuit, HDTV, ISDN. There are many methods of high-speed signal processing. This paper describes a design approach for the realization of high-frequency Op-amp in CMOS technology. A limiting factor in Op-amp based analog integrated circuits is the limited useful frequency range. this thesis will develop a CMOS op-amp architecture with improved gainband width product with this technique an op-amp will achieve up to 170MHz (CL=2pF) unity-gain frequency with a 1.2-micron design rule. This CMOS op-amp is particularly suitable for achieving wide and stable closed-loop band widths, such as required in high-frequency SC filters, high-speed analog circuits.

Current Characteristics of CMOS device Broken by Intentional High Power Electromagnetic Wave (의도 고출력 전자파에 의해 오동작 되는 CMOS소자의 전류특성)

  • Hwang, Sun-Mook;Hong, Joo-Il;Han, Seung-Mook;Park, Shin-Woo;Huh, Chang-Su
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1516-1517
    • /
    • 2007
  • This paper investigated the breakdown effect of the CMOS device by impact of high power electromagnetic wave. The experiments employed a waveguide to study the current characteristics of CMOS device broken by high power electromagnetic wave. The CMOS device were composed of a LED drive circuit for visual discernment. Also CMOS device broken by high power electromagnetic wave was observed by power current. The CMOS device were broke by high power electromagnetic wave at about 10 kV/m and when power current is 75 mA. Based on the result, CMOS devices should show plan to protect the CMOS devices by high power electromagnetic wave. And the database from this experiment should provide the basis for future investigation.

  • PDF

A $160{\times}120$ Light-Adaptive CMOS Vision Chip for Edge Detection Based on a Retinal Structure Using a Saturating Resistive Network

  • Kong, Jae-Sung;Kim, Sang-Heon;Sung, Dong-Kyu;Shin, Jang-Kyoo
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.59-69
    • /
    • 2007
  • We designed and fabricated a vision chip for edge detection with a $160{\times}120$ pixel array by using 0.35 ${\mu}m$ standard complementary metal-oxide-semiconductor (CMOS) technology. The designed vision chip is based on a retinal structure with a resistive network to improve the speed of operation. To improve the quality of final edge images, we applied a saturating resistive circuit to the resistive network. The light-adaptation mechanism of the edge detection circuit was quantitatively analyzed using a simple model of the saturating resistive element. To verify improvement, we compared the simulation results of the proposed circuit to the results of previous circuits.

  • PDF

The Design of BCM based Power Factor Correction Control IC for LED Applications (LED 응용을 위한 BCM 방식의 Power Factor Correction Control IC 설계)

  • Kim, Ji-Man;Jung, Jin-Woo;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2707-2712
    • /
    • 2011
  • In this paper, a power factor correction (PFC) control circuit using single stage boundary conduction mode(BCM) for the 400V. 120W LED drive application has been designed. The proposed control circuit is aimed for improvement of the power factor correction and reduction of the total harmonic distortion. In this circuit, a new CMOS multiplier structure is used instead of a conventional BJT(bipolar junction transistor) based multiplier where has a relatively large area. The CMOS multiplier can bring 30 % reduced chip area, competitive die cost in comparison with the conventional BJT multiplier.

A Hysteresis Controllable Monolithic Comparator Circuit for the Radio Frequency Identification (RFID 히스테리시스 제어용 CMOS 비교기 IC 회로)

  • Kim, Young-Gi
    • Journal of IKEEE
    • /
    • v.15 no.3
    • /
    • pp.205-210
    • /
    • 2011
  • A novel hysteresis tunable monolithic comparator circuit based on a 0.35 ${\mu}m$ CMOS process is suggested in this paper. To tune the threshold voltage of the hysteresis in the comparator circuit, two external digital bits are used with supply voltage of 3.3V. The threshold voltage of the suggested comparator circuit is controlled by 234mV by change of 4 digital control bits in the simulation, which is a close agreement to the analytic calculation.