• Title/Summary/Keyword: CMOS Power Amplifier

Search Result 392, Processing Time 0.025 seconds

Compact 2.5 Gb/s Burst-Mode Receiver with Optimum APD Gain for XG-PON1 and GPON Applications

  • Kim, Jong-Deog;Le, Quan;Lee, Mun-Seob;Yoo, Hark;Lee, Dong-Soo;Park, Chang-Soo
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.622-624
    • /
    • 2009
  • This letter presents a compact 2.5 Gb/s burst-mode receiver using the first reported monolithic amplifier IC developed with 0.25 ${\mu}m$ SiGe BiCMOS technology. With optimum avalanche photodiode gain, the receiver module can obtain a fast response, high sensitivity and wide dynamic range, satisfying the overhead timing and various power specifications for a 2.5 Gb/s next-generation passive optical network (PON), as well as a legacy 1.25 Gb/s PON in the upstream.

Field programmable analog arrays for implementation of generalized nth-order operational transconductance amplifier-C elliptic filters

  • Diab, Maha S.;Mahmoud, Soliman A.
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.534-548
    • /
    • 2020
  • This study presents a new architecture for a field programmable analog array (FPAA) for use in low-frequency applications, and a generalized circuit realization method for the implementation of nth-order elliptic filters. The proposed designs of both the FPAA and elliptic filters are based on the operational transconductance amplifier (OTA) used in implementing OTA-C filters for biopotential signal processing. The proposed FPAA architecture has a flexible, expandable structure with direct connections between configurable analog blocks (CABs) that eliminates the use of switches. The generalized elliptic filter circuit realization provides a simplified, direct synthetic method for an OTA-C symmetric balanced structure for even/odd-nth-order low-pass filters (LPFs) and notch filters with minimum number of components, using grounded capacitors. The filters are mapped on the FPAA, and both architectures are validated with simulations in LTspice using 90-nm complementary metal-oxide semiconductor (CMOS) technology. Both proposed FPAA and filters generalized synthetic method achieve simple, flexible, low-power designs for implementation of biopotential signal processing systems.

A Constant $g_m$ Input Stage for Low Voltage Rail-to-Rail Operational Amplifier (일정 트랜스컨덕컨스 $g_m$를 갖는 저전압 Rail-to-Rail 연산증폭기의 입력단 회로의 설계)

  • 장일권;김세준송병근곽계달
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.791-794
    • /
    • 1998
  • This paper presents a constant gm input stagefor low-voltage rail-to-rail operational amplifier. A proposed scheme uses two current paths to keep sum of the biasing currents of the complimentary input pairs. The op amp was designed in a $0.8\mu\textrm{m},$ n-well CMOS, double-polysilicon and double-metal technology. This achieved in weak inversion. The circuit can operate in power supply voltage from 1.5V up to 3V. An open-loop gain, AV, was simulated as 84dB for 15pF load. An unit-gain frequency, fT was 10MHz.

  • PDF

A New Floating Inductor Using A Voltage Differencing Transconductance Amplifier (전압 차동 트랜스컨덕턴스 증폭기를 사용한 새로운 플로팅 인덕터)

  • Bang, Junho;Lee, Jong-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.143-148
    • /
    • 2015
  • In this paper a new method is proposed for realizing active floating inductors from voltage differencing transconductance amplifier(VDTA) which is being studied nowadays. This proposed method employs only one VDTA and one transconductance for designing an active inductor from a passive floating inductor and implementing it to integrated circuits. The number of CMOS transistors can be considerably reduced from 6~18 as 1~3 gm circuits can be eliminated and even without R the design can be made, which can help in reducing the size of the circuit and power consumption. The proposed VDTA floating inductor was successfully used in constructing 1 MHz second order biquad active bandpass filter and bandwidth could be adjusted from 77kHz~1.59MHz by the changes made in gm from 6uS~20uS.

A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique

  • Moon, Yongsam
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.331-338
    • /
    • 2014
  • A charge-pump circuit using a current-bypass technique, which suppresses charge sharing and reduces the sub-threshold currents, helps to decrease phase-locked loop (PLL) jitter without resorting to a feedback amplifier. The PLL shows no stability issues and no power-up problems, which may occur when a feedback amplifier is used. The PLL is implemented in 0.11-${\mu}m$ CMOS technology to achieve 0.856-ps RMS and 8.75-ps peak-to-peak jitter, which is almost independent of ambient temperature while consuming 4 mW from a 1.2-V supply.

The Design of a 0.15 ps High Resolution Time-to-Digital Converter

  • Lee, Jongsuk;Moon, Yong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.334-341
    • /
    • 2015
  • This research outlines the design of a HR-TDC (High Resolution Time-to-Digital Converter) for high data rate communication systems using a $0.18{\mu}m$ CMOS process. The coarse-fine architecture has been adopted to improve the resolution of the TDC. A two-stage vernier time amplifier (2S-VTA) was used to amplify the time residue, and the gain of the 2S-VTA was larger than 64. The error during time amplification was compensated using two FTDCs (Fine-TDC) with their outputs. The resolution of the HR-TDC was 0.15 ps with a 12-bit output and the power consumption was 4.32 mW with a 1.8-V supply voltage.

Four-Channel Differential CMOS Optical Transimpedance Amplifier Arrays for Panoramic Scan LADAR Systems (파노라믹 스캔 라이다 시스템용 4-채널 차동 CMOS 광트랜스 임피던스 증폭기 어레이)

  • Kim, Sang Gyun;Jung, Seung Hwan;Kim, Seung Hoon;Ying, Xiao;Choi, Hanbyul;Hong, Chaerin;Lee, Kyungmin;Eo, Yun Seong;Park, Sung Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.82-90
    • /
    • 2014
  • In this paper, a couple of 4-channel differential transimpedance amplifier arrays are realized in a standard 0.18um CMOS technology for the applications of linear LADAR(laser detection and ranging) systems. Each array targets 1.25-Gb/s operations, where the current-mode chip consists of current-mirror input stage, a single-to-differential amplifier, and an output buffer. The input stage exploits the local feedback current-mirror configuration for low input resistance and low noise characteristics. Measurements demonstrate that each channel achieves $69-dB{\Omega}$ transimpedance gain, 2.2-GHz bandwidth, 21.5-pA/sqrt(Hz) average noise current spectral density (corresponding to the optical sensitivity of -20.5-dBm), and the 4-channel total power dissipation of 147.6-mW from a single 1.8-V supply. The measured eye-diagrams confirms wide and clear eye-openings for 1.25-Gb/s operations. Meanwhile, the voltage-mode chip consists of inverter input stage for low noise characteristics, a single-to-differential amplifier, and an output buffer. Test chips reveal that each channel achieves $73-dB{\Omega}$ transimpedance gain, 1.1-GHz bandwidth, 13.2-pA/sqrt(Hz) average noise current spectral density (corresponding to the optical sensitivity of -22.8-dBm), and the 4-channel total power dissipation of 138.4-mW from a single 1.8-V supply. The measured eye-diagrams confirms wide and clear eye-openings for 1.25-Gb/s operations.

A Gain and NF Dynamic Controllable Wideband Low Noise Amplifier (이득과 잡음 지수의 동적 제어가 가능한 광대역 저 잡음 증폭기)

  • Oh, Tae-Soo;Kim, Seong-Kyun;Huang, Guo-Chi;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.900-905
    • /
    • 2009
  • A common drain feedback CMOS wideband LNA with current bleeding and input inductive series-peaking techniques is presented in this paper. DC coupling is adopted between cascode and feedback amplifiers, so that the gain and NF of the LNA can be dynamically controlled by adjusting the bleeding current. The fabricated LNA shows the bandwidth of 2.5 GHz. The high gain mode shows 17.5 dB gain with $1.7{\sim}2.8\;dB$ NF and consumes 27 mW power and the low gain mode has 14 dB gain with $2.7{\sim}4.0\;dB$ NF and dissipates 1.8 mW from 1.8 V supply.

6-Gbps Single-ended Receiver with Continuous-time Linear Equalizer and Self-reference Generator (기준 전압 발생기와 연속 시간 선형 등화기를 가진 6 Gbps 단일 종단 수신기)

  • Lee, Pil-Ho;Jang, Young-Chan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.54-61
    • /
    • 2016
  • A 6-Gbps single-ended receiver with a linear equalizer and a self-reference generator is proposed for a high-speed interface with the double data rate. The proposed single-ended receiver uses a common gate amplifier to increase a voltage gain for an input signal with low voltage level. The continuous-time linear equalizer which reduces gain to the low frequencies and achieves high-frequency peaking gain is implemented in the common gate amplifier. Furthermore, a self-reference generator, which is controlled with the resolution 2.1 mV using digital averaging method, is implemented to maximize the voltage margin by removing the offset noise of the common gate amplifier. The proposed single-ended receiver is designed using a 65-nm CMOS process with 1.2-V supply and consumes the power of 15 mW at the data rate of 6 Gbps. The peaking gain in the frequency of 3 GHz of the designed equalizer is more than 5 dB compared to that in the low frequency.

A 2.4-GHz Low-Power Direct-Conversion Transmitter Based on Current-Mode Operation (전류 모드 동작에 기반한 2.4GHz 저전력 직접 변환 송신기)

  • Choi, Joon-Woo;Lee, Hyung-Su;Choi, Chi-Hoon;Park, Sung-Kyung;Nam, Il-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, a low-power direct-conversion transmitter based on current-mode operation, which satisfies the IEEE 802.15.4 standard, is proposed and implemented in a $0.13{\mu}m$ CMOS technology. The proposed transmitter consists of DACs, LPFs, variable gain I/Q up-conversion mixer, a divide-by-two circuit with LO buffer, and a drive amplifier. By combining DAC, LPF, and variable gain I/Q up-conversion mixer with a simple current mirror configuration, the transmitter's power consumption is reduced and its linearity is improved. The drive amplifier is a cascode amplifier with gain controls and the 2.4GHz I/Q differential LO signals are generated by a divide-by-two current-mode-logic (CML) circuit with an external 4.8GHz input signal. The implemented transmitter has 30dB of gain control range, 0dBm of maximum transmit output power, 33dBc of local oscillator leakage, and 40dBc of the transmit third harmonic component. The transmitter dissipates 10.2mW from a 1.2V supply and the die area of the transmitter is $1.76mm{\times}1.26mm$.