• Title/Summary/Keyword: CMOS Image Sensor

Search Result 255, Processing Time 0.024 seconds

2500 fps High-Speed Binary CMOS Image Sensor Using Gate/Body-Tied Type High-Sensitivity Photodetector (Gate/Body-Tied 구조의 고감도 광검출기를 이용한 2500 fps 고속 바이너리 CMOS 이미지센서)

  • Kim, Sang-Hwan;Kwen, Hyeunwoo;Jang, Juneyoung;Kim, Young-Mo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.61-65
    • /
    • 2021
  • In this study, we propose a 2500 frame per second (fps) high-speed binary complementary metal oxide semiconductor (CMOS) image sensor using a gate/body-tied (GBT) p-channel metal oxide semiconductor field effect transistor-type high-speed photodetector. The GBT photodetector generates a photocurrent that is several hundred times larger than that of a conventional N+/P-substrate photodetector. By implementing an additional binary operation for the GBT photodetector with such high-sensitivity characteristics, a high-speed operation of approximately 2500 fps was confirmed through the output image. The circuit for binary operation was designed with a comparator and 1-bit memory. Therefore, the proposed binary CMOS image sensor does not require an additional analog-to-digital converter (ADC). The proposed 2500 fps high-speed operation binary CMOS image sensor was fabricated and measured using standard CMOS process.

Simulation of High-Speed and Low-Power CMOS Binary Image Sensor Based on Gate/Body-Tied PMOSFET-Type Photodetector Using Double-Tail Comparator

  • Kwen, Hyeunwoo;Kim, Sang-Hwan;Lee, Jimin;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.82-88
    • /
    • 2020
  • In this paper, we propose a complementary metal-oxide semiconductor (CMOS) binary image sensor with a gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector using a double-tail comparator for high-speed and low-power operations. The GBT photodetector is based on a PMOSFET tied with a floating gate (n+ polysilicon) and a body that amplifies the photocurrent generated by incident light. A double-tail comparator compares an input signal with a reference voltage and returns the output signal as either 0 or 1. The signal processing speed and power consumption of a double-tail comparator are superior over those of conventional comparator. Further, the use of a double-sampling circuit reduces the standard deviation of the output voltages. Therefore, the proposed CMOS binary image sensor using a double-tail comparator might have advantages, such as low power consumption and high signal processing speed. The proposed CMOS binary image sensor is designed and simulated using the standard 0.18 ㎛ CMOS process.

Shading Correction Algorithm and CMOS Image Sensing System Design (쉐이딩 보정 알고리즘과 CMOS 이미지 센싱 시스템 설계)

  • Kim, Young Bin;Ryu, Conan K.R.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.1003-1006
    • /
    • 2012
  • The image correction algorithm and system design for CMOS sensor to enhance the image resolution is presented in this paper. The proposed algorithm finds out the image cell from the sensor and process them by the limited memory configuration. The evaluation of the method is done by the designed hardware system. The experimental results are capable of improving contrast per channel and of sensing equalized image quality on an edge of image.

  • PDF

Development of Straightness Measurement System for Improving Manufacturing Process Precision (ODN제조 공정 정밀도 향상을 위한 진직도 측정시스템 개발)

  • Kim, Eung Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.17-21
    • /
    • 2019
  • In this paper, a high precision straightness measurement system has been developed at low cost using a visible laser and CMOS image sensor. CMOS image sensor detected optical image and the variation of straightness was calculated by image processing. We have observed that the error of the developed straightness measurement system was 0.9% when a distance of 3m between laser and image sensor. And it can be applied to 3D printer and any other areas.

Implementation of Large Area CMOS Image Sensor Module using the Precision Align Inspection (정밀 정렬 검사를 이용한 대면적 CMOS 이미지 센서 모듈 구현)

  • Kim, Byoungwook;Kim, Youngju;Ryu, Cheolwoo;Kim, Jinsoo;Lee, Kyungyong;Kim, Myungsoo;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.8 no.3
    • /
    • pp.147-153
    • /
    • 2014
  • This paper describes a large area CMOS image sensor module Implementation using the precision align inspection program. This work is needed because wafer cutting system does not always have high precision. The program check more than 8 point of sensor edges and align sensors with moving table. The size of a $2{\times}1$ butted CMOS image sensor module which except for the size of PCB is $170mm{\times}170mm$. And the pixel size is $55{\mu}m{\times}55{\mu}m$ and the number of pixels is $3,072{\times}3,072$. The gap between the two CMOS image sensor module was arranged in less than one pixel size.

High-Speed CMOS Binary Image Sensor with Gate/Body-Tied PMOSFET-Type Photodetector

  • Choi, Byoung-Soo;Jo, Sung-Hyun;Bae, Myunghan;Kim, Jeongyeob;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.332-336
    • /
    • 2014
  • In this paper, we propose a complementary metal oxide semiconductor (CMOS) binary image sensor with a gate/body-tied (GBT) PMOSFET-type photodetector for high-speed operation. The GBT photodetector of an active pixel sensor (APS) consists of a floating gate ($n^+$-polysilicon) tied to the body (n-well) of the PMOSFET. The p-n junction photodiode that is used in a conventional APS has a good dynamic range but low photosensitivity. On the other hand, a high-gain GBT photodetector has a high level of photosensitivity but a narrow dynamic range. In addition, the pixel size of the GBT photodetector APS is less than that of the conventional photodiode APS because of its use of a PMOSFET-type photodetector, enabling increased image resolution. A CMOS binary image sensor can be designed with simple circuits, as a complex analog to digital converter (ADC) is not required for binary processing. Because of this feature, the binary image sensor has low power consumption and high speed, with the ability to switch back and forth between a binary mode and an analog mode. The proposed CMOS binary image sensor was simulated and designed using a standard CMOS $0.18{\mu}m$ process.

A CMOS Digital Image Sensor with a Feature-Driven Attention Module (특징기반 주의 모듈을 사용하는 CMOS 디지털 이미지 센서)

  • Park, Min-Chul;Cheoi, Kyung-Joo;Hamamoto, Takayuki
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.189-196
    • /
    • 2008
  • In this paper, a CMOS digital image sensor, which consists of A/D conversion, motion estimation circuits, and an attention module for ROI (Region of Interest) detection is presented. The functions of A/D conversion and motion estimation are implemented by $0.6{\mu}m$ CMOS processing circuit as hardware, and the attention module is implemented outside the circuit as software currently. Attention modules are taken to improve limited applications of the smart image sensor. The current smart image sensor responses to the changes of intensity, and uses the integration time to estimate motion. Therefore it is limited in its applications. To make up for inherent property of the sensor from circuit design and extend its applications we decide to introduce perception solutions to the image sensor. Attention modules for still and moving images are employed to achieve such purposes. The suggested approach makes the smart image sensor available with additional functions for such cases that motion estimation or intensity changes are not observed. Experimental result shows the usefulness and extension of the image sensor.

Digital Sun Sensor Development using CMOS Image Sensor (CMOS-Image Sensor(CIS)를 이용한 디지털 태양센서 개발)

  • Rhee, Sung-Ho;Jang, Tae-Seong;Lee, Chel;Kang, Kyung-In;Kim, Hyung-Myung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.460-465
    • /
    • 2007
  • This paper deals with the Fine Digital Sun Sensor (FDSS) for Science & Technology Satellite 2(STSAT-2). The FDSS was firstly developed by using CMOS-Image sensor(CIS) in South Korea. This paper will describe the configuration of the FDSS, the design of the optical part, the analysis result of the optical characteristics of the sunlight, and the calibration result measured by solar simulator.

An Efficient Dead Pixel Detection Algorithm and VLSI Implementation (효율적인 불량화소 검출 알고리듬 및 하드웨어 구현)

  • An Jee-Hoon;Lee Won-Jae;Kim Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.38-43
    • /
    • 2006
  • In this paper, we propose the efficient dead pixel detection algorithm for CMOS image sensors and its hardware architecture. The CMOS image sensors as image input devices are becoming popular due to the demand for miniaturized, low-power and cost-effective imaging systems. However, the presence of the dead pixels degrade the image quality. To detect the dead pixels, the proposed algorithm is composed of scan, trace and detection step. The experimental results showed that it could detect 99.99% of dead pixels. It was designed in a hardware description language and total logic gate count is 3.2k using 0.25 CMOS standard cell library.

Development of Measuring instrument module for Biosensor Activity using CMOS Image sensor and sensor network (센서 네트워크와 CMOS 이미지 센서를 이용한 바이오센서 활동량 측정 모듈 개발)

  • Park, Se-Hyun;Kak, Ho-Hjub;Kim, Eung-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.898-901
    • /
    • 2008
  • Measuring instrument module for biosensor activity is developed using CMOS image sensor and sensor network. Most of living organism in water as water flea, fish, etc are frequently used as biological sensor for monitoring the water qualify. The activity of biosensor is changed by the quality of water. The developed measuring instrument module can easily interface to the existing instrument.

  • PDF