• Title/Summary/Keyword: CMEs

Search Result 116, Processing Time 0.024 seconds

Origin of the Multiple Type II Solar Radio Bursts Observed on December 31 2007

  • Cho, Kyung-Suk;Bong, Su-Chan;Kim, Yeon-Han;Kwon, Ryun-Young;Park, Geun-Seok;Moon, Yong-Jae;Park, Young-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.37.1-37.1
    • /
    • 2009
  • Solar type II radio burst is regarded as a signature of coronal shock. However its association with coronal mass ejections (CMEs)-driven shock and/or flare blast waves remains controversial. On December 31 2007, SOHO/LASCO and STEREO/COR observed a CME that occurred on the east limb of the Sun. Meanwhile, two type II bursts were observed sequently by KASI/E-Callisto and the Culgoora radio observatory during the CME apparence time. In this study, we estimate kinematics of the two coronal shocks from dynamic spectrum of the multiple type II bursts and compare with the kinematics of the CME derived from the space observations. An origin of the multiple type II bursts is inspected and discussed briefly.

  • PDF

Statistical Study on solar energetic particle acceleration using multi-channel observations

  • Kim, Rok-Soon;Cho, Kyung-Suk;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.70.1-70.1
    • /
    • 2014
  • We study the origin and acceleration mechanism of solar energetic particles (SEPs), which are one of the major causes of hazardous impacts in the space weather. By adopting the velocity dispersion to the multi-channel energy band observations from SOHO/ERNE and Wind/3DP, we estimate the onset time for each energy band and investigate coronal structure and CME's dynamics associated with the SEPs. Through this study we will find clues to answer the questions about the origin and acceleration of SEPs as well as their associated with flare and/or CMEs. We will apply our findings to improve the forecasting system of the solar radiation storms.

  • PDF

A Study to Derive Energetics of Coronal Magnetic Structures

  • Kang, Jihye;Magara, Tetsuya;Inoue, Satoshi;Lee, Hwanhee;An, Jun-Mo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.127.2-127.2
    • /
    • 2012
  • Space weather prediction related to flares and CMEs is an important issue these days. It is, however, hard to estimate magnetic energy of invisible coronal magnetic structure. The virial theorem is one of the ways to determine the magnetic energy. In this study, we performed a series of MHD simulation of an emerging flux tube and apply the virial theorem to the simulation results and derive energetics of coronal structures. We then analyze real observational data on NOAA 11302 to derive the distributions of physical quantities, such as density, temperature, velocity and magnetic field. We also use knowledge form simulation analysis to estimate the magnetic energy of NOAA 11302.

  • PDF

Mass constraints of coronal mass ejection plasmas observed in EUV and X-ray passbands

  • Lee, Jin-Yi;Raymond, John C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2011
  • Coronal mass ejection (CME) plasmas have been observed in EUV and X-ray passbands as well as in white light. Mass of CME has been determined using polarized brightness observed by the Large Angle and Spectrometric Coronagraph Experiment (LASCO) on board Solar and Heliospheric Observatory (SOHO). Therefore, this mass obtained from the LASCO observation indicates the total CME mass. However, the mass of CME plasma in different temperatures can be determined in EUV and X-ray passbands using observations by SOHO/EIT, STEREO/EUVI, and Hinode/XRT. Prominence/CME plasmas have been observed as absorption or emission features in EUV and X-ray passbands. The absorption features provide a lower limit to cold mass. In addition, the emission features provide an upper limit to the mass of plasmas in temperature ranges of EUV and X-ray. We determine the mass constraints using the emission measure obtained by assuming the prominence/CME structures. This work will address the mass constraints of hot and cold plasmas in CMEs, comparing to total CME mass.

  • PDF

DRAG EFFECT OF KOMPSAT-1 DURING STRONG SOLAR AND GEOMAGNETIC ACTIVITY (강한 태양 및 지자기 활동 기간 중에 아리랑 위성 1호(KOMPSAT-1)의 궤도 변화)

  • Park, J.;Moon, Y.J.;Kim, K.H.;Cho, K.S.;Kim, H.D.;Kim, Y.H.;Park, Y.D.;Yi, Y.
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.2
    • /
    • pp.125-134
    • /
    • 2007
  • In this paper, we analyze the orbital variation of the Korea Multi-Purpose SATellite-1(KOMPSAT-1) in a strong space environment due to satellite drag by solar and geomagnetic activities. The satellite drag usually occurs slowly, but becomes serious satellite drag when the space environment suddenly changes via strong solar activity like a big flare eruption or coronal mass ejections(CMEs). Especially, KOMPSAT-1 as a low earth orbit satellite has a distinct increase of the drag acceleration by the variations of atmospheric friction. We consider factors of solar activity to have serious effects on the satellite drag from two points of view. One is an effect of high energy radiation when the flare occurs in the Sun. This radiation heats and expands the upper atmosphere of the Earth as the number of neutral particles is suddenly increased. The other is an effect of Joule and precipitating particle heating caused by current of plasma and precipitation of particles during geomagnetic storms by CMEs. It also affects the density of neutral particles by heating the upper atmo-sphere. We investigate the satellite drag acceleration associated with the two factors for five events selected based on solar and geomagnetic data from 2001 to 2002. The major results can be summarized as follows. First, the drag acceleration started to increase with solar EUV radiation with the best cross-correlation (r = 0.92) for 1 day delayed F10.7. Second, the drag acceleration and Dst index have similar patterns when the geomagnetic storm is dominant and the drag acceleration abruptly increases during the strong geomagnetic storm. Third, the background variation of the drag accelerations is governed by the solar radiation, while their short term (less than a day) variations is governed by geomagnetic storms.

Studies on the Anodic Oxidation Behavior of Methanol and L-Ascorbic Acid by Using Glassy Carbon Electrodes Modified with Inorganic-Metal Polymeric Films (무기 금속 고분자 막을 도포시킨 유리질 탄소전극을 이용한 메탄올과 L-ascorbic acid의 양극 산화 거동에 관한 연구)

  • Yoo, Kwang-Sik;Woo, Sang-Beom
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.347-352
    • /
    • 1998
  • A study was carried out on the elelctrochemical characteristics of chemically modified electrodes (CMEs) by cyclic voltammetry. Fabrication of CMEs was made by coating with mixed valence (mv) inorganic-metal polymeric films on the glassy carbon electrode surface by potential cycling. Anodic oxidation behavior of methanol and L-ascorbic acid was studied by using CMEs working electrode. Deposition of films such as mv ruthenium oxo/ruthenium cyanide film (mv Ru-O/CN-Ru), mv ruthenium oxo/ferrocyanide film (mv Ru-O/$Fe(CN)_6$), and mv ruthenium oxo/ruthenium cyanide/Rhodium film (mv Ru-O/CN-Ru/Rh) was obtained to coat by scan rate of 50 mV/sec within the specified potential range (-0.5V ~ +1.2V). Film thickness was controlled by the repeat of the potential cycling. Anodic oxidation behavior of methanol was as follow. Calibration graph by using mv Ru-O/CN-Ru film showed linearly from 10 mM to 80 mM MeOH with slope factor of $-7.552{\mu}A/cm^2$. Although slope factor by using mv Ru-O/$Fe(CN)_6$ film was $-5.13{\mu}A/cm^2$, yet linear range of calibration graph could be extended from 10 mM to 100 mM MeOH. Anodic oxidation behavior of L-ascorbic acid was studied by mv Ru-O/CN-Ru film on the glassy carbon electrode and the glassy carbon electrode with Rh film, Glassy carbon electrode modified with Ru polymeric film was showed better sensitivity than the Rh-glassy carbon modified electrode (mv Ru-O/CN-Ru/Rh). Calibration graph was linear from 0.1 mM to 5 mM L-ascorbic acid by using glassy carbon electrode modified with Ru polymeric film. Solpe factor and relative coefficient are $-84.78{\mu}A/mM$ and 0.998, respectively.

  • PDF

Electrochemical Determination of Ag(I) Ion at Chemically Modified Carbon-Paste Electrode Containing 1,5,9,13-Tetrathiacyclohexadecane (1,5,9,13-Tetrathiacyclohexadecane 수식전극을 사용한 Ag(I)의 전기화학적 정량)

  • Ha, Kwang Soo;Jang, Mi-Kyeong;Seo, Moo Lyong
    • Analytical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.187-195
    • /
    • 1997
  • Chemically modified electrodes(CMEs) for Ag(I) were constructed by incoporating 1,5,9,13-tetrathiacyclohexadecane([16]-ane-$S_4$) with a conventional carbon-paste mixture composed of graphite powder and nujol oil. Ag(I) ion was chemically deposited onto the surface of the modified electrode with [16]-ane-$S_4$ by immersion of the electrode in the acetate buffer solution(pH=4.5) containing $5.0{\times}10^{-4}M$ Ag(I) ion. And then the electrode deposited with Ag(I) was reduced at -0.3V vs. S.C.E. Well-defined stripping voltammetric peaks could be obtained by scanning the potential to the positive direction. The CME surface was regenerated with exposure to 0.1M $HNO_3$ solution and was reused for the determination of Ag(I) ion. When deposition/measurement/regeneration cycles were 10 times, the response could be reproduced with relative standard deviation of 6.08%. In case of differential pulse stripping voltammetry, the calibration curve for Ag(I) was linear over the range of $5.0{\times}10^{-7}{\sim}1.5{\times}10^{-6}M$. And the detection limit was $2.0{\times}10^{-7}M$. Various ions such as Cd(II), Ni(II), Pb(II), Zn(II), Mn(II), Mg(II), EDTA, and oxalate(II) did not influence the determination of Ag(I) ion, except Cu(II) ion.

  • PDF

Experimental Transfer of Tetracycline Resistance Genes from Fish-derived Bacteria to Escherichia coli

  • Kim Seok-Ryel;Kim Hyeung-Rak;Suzuki Satoru
    • Fisheries and Aquatic Sciences
    • /
    • v.9 no.2
    • /
    • pp.97-100
    • /
    • 2006
  • To determine whether the tetracycline resistance genes tet (34), tet (M), and tet (S) can be transferred among bacteria, we used a filter mating experiment allowing intimate cell-cell contact between donor and recipient. The tet(34) gene, conveyed on a chromosome of Vibrio species (No. 6 and SW-42) was not transferred to Escherichia coli JM109, suggesting that it is not transferred among bacterial species. The tet (M) gene was transferred from three Vibrio strains (4-E, SW-18, and SW-38) to E. coli at frequencies of $8.5{\times}10^{-5}\;to\;2.1{\times}10^{-6}$. The tet(S) gene was transferred from Lactococcus garvieae KHS98032 to E. coli at a frequency of $1.8{\times}10^{-6}$. Transconjugated recipients showed increased minimum inhibitory concentrations against oxytetracycline. Although the donors possess the Tn916-Tn1545 transposons, they were not detected in transformed recipients, suggesting that the transfer of tet(M) and tet(S) is mediated by elements or mechanisms. Two ribosomal protect protein genes were also transmissible from marine bacteria to E. coli, suggesting gene hopping among marine, terrestrial, and human environments.

RADIAL AND AZIMUTHAL OSCILLATIONS OF HALO CORONAL MASS EJECTIONS

  • Lee, Harim;Moon, Y.J.;Nakariakov, V.M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.66.1-66.1
    • /
    • 2015
  • We present the first observational detection of radial and azimuthal oscillations in full halo coronal mass ejections (HCMEs). We analyze nine HCMEs well-observed by LASCO from Feb 2011 to Jun 2011. Using the LASCO C3 running difference images, we estimated the instantaneous apparent speeds of the HCMEs in different radial directions from the solar disk center. We find that the development of all these HCMEs is accompanied with quasi-periodic variations of the instantaneous radial velocity with the periods ranging from 24 to 48 mins. The amplitudes of the instant speed variations reach about a half of the projected speeds. The amplitudes are found to anti-correlate with the periods and correlate with the HCME speed, indicating the nonlinear nature of the process. The oscillations have a clear azimuthal structure in the heliocentric polar coordinate system. The oscillations in seven events are found to be associated with distinct azimuthal wave modes with the azimuthal wave number m=1 for six events and m=2 for one event. The polarization of the oscillations in these seven HCMEs is broadly consistent with those of their position angles with the mean difference of $42.5^{\circ}$. The oscillations may be connected with natural oscillations of the plasmoids around a dynamical equilibrium, or self-oscillatory processes, e.g. the periodic shedding of Alfvenic vortices. Our results indicate the need for advanced theory of oscillatory processes in CMEs.

  • PDF

Determination of coronal electron density distributions by DH type II radio bursts and CME observations

  • Lee, Jae-Ok;Moon, Yong-Jae;Lee, Jin-Yi;Lee, Kyoung-Sun;Kim, Rok-Soon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.63.1-63.1
    • /
    • 2015
  • In this study, we determine coronal electron density distributions by analyzing DH type II radio observations based on the assumption: a DH type II radio burst is generated by the shock formed at a CME leading edge. For this, we consider 11 Wind/WAVES DH type II radio bursts (from 2000 to 2003 and from 2010 to 2012) associated with SOHO/LASCO limb CMEs using the following criteria: (1) the fundamental and second harmonic emission lanes are well identified; (2) its associated CME is clearly identified in the LASCO-C2 or C3 field of view at the time of type II observation. For these events, we determine the lowest frequencies of their fundamental emission lanes and the heights of their leading edges. Coronal electron density distributions are obtained by minimizing the root mean square error between the observed heights of CME leading edges and the heights of DH type II radio bursts from assumed electron density distributions. We find that the estimated coronal electron density distribution ranges from 2.5 to 10.2-fold Saito's coronal electron density models.

  • PDF