• Title/Summary/Keyword: CMC

Search Result 929, Processing Time 0.035 seconds

Effect of Cations on the Sorption and the Tensile Properties of CMC Fibers (CMC섬유내의 양이온이 섬유의 흡습성과 인장 성질에 미치는 영향)

  • 이미식
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.1
    • /
    • pp.113-120
    • /
    • 1994
  • The Purpose of this study was to improve the moisture related properties of viscose rayon fibers. Viscose rayon filament yarns were partially etherified to make CMC fibers. CMC fibers were converted to the sodium, calcium, and ferric salt forms by an ion exchange method. The property changes of ion exchanged CMC fibers were examined. Cation contents of fibers were varied depending on the degree of substitution of CMC fibers. The strength of Na, Ca, Fe-CMC was higher than H-CMC owing to the plasticization by moisture sorption and the crosslinking by cations. The moisture regain was increased by carboxymethylation and that of Fe-CMC showed the highest value. The degree of swelling determined by the water retention value was observed to be Na-CMC > Ca-CMC > H-CMC > Fe-CMC. The solution retention value was decreased in the order . Ca-CMC > Na-CMC > H-CMC > Fe-CMC.

  • PDF

Effects of Ammonia Swelling Treatment in Carboxymethylation of Domestic Kraft Pulp on Characteristics of Corboxymethylcellulose(CMC) and CMC Solution (국산(國産) 크라프트 펄프의 카르복시메틸화시(化時) 암모니아 팽윤처리(膨潤處理)가 카르복시메틸셀룰로오스와 카르복시메틸셀룰로오스 용액(溶液)의 특성(特性)에 미치는 효과(效果))

  • Ahn, Byoung-Kuk;Ahn, Won-Yung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.25-35
    • /
    • 1990
  • To investigate the effects of swelling treatment by ammonia on characteristics of carboxymethy1cellulose(CMC) and CMC solution, the domestic kraft pulp pretreated with 5%, 10%, 15% and 20% $NH_4OH$ solution, was carboxymethylated by the standard method, and then the CMC prepared was tested. The physical properties of CMC and CMC solution, such as degree of substitution, transparency. viscosity, weight increase and solubility, were measured, and the comparison with commercial domestic CMC used as a food additive was done. The results obtained were as follows; 1. In CMC manufactured by standard solvent method, hardwood bleached kraft pulp(LBKP) was more substituted than safwood bleached kraft pulp(NBKP), and viscosity of NBKP was higher than that of LBKP. 2. When ammonia swelling treatment was done, degree of substitution gradually decreased with increasing concentration of $NH_4OH$, and degree of substitution of LBKP decreased with a larger range than that of NBKP. 3. When ammonia swelling treatment was done. transparency of CMC solution from LBKP was hardly effected, but in case of NBKP gradually increased with increasing concentration of $NH_4OH$. 4. When ammonia swelling treatment was done, viscosity of CMC solution was higher than that of CMC solution without ammonia swelling treatment. Especially, CMC of high viscosity could be manufactured in 5%, 10% concentration levels of $NH_4OH$. 5. In CMC manufactured from domestic NBKP, CMC at the range of 0.40 to 0.50 in DS was dispersed easily and quickly dissolved, and CMC at more than 0.50 in DS was dispersed slowly in water solution. 6. In comparison with commercial domestic CMC used as a food additive, CMC manufactured from domestic NBKP was higher in DS, and was lower in viscosity and transparency.

  • PDF

Critical Micelle Concentration Expressed in Molarity or Mole Fraction and Its Relation to Thermodynamic Potentials (몰농도 또는 몰분율로 표시되는 임계 미셀 농도와 열역학적 포텐셜과의 관계)

  • Kim, Hong-Un;Lim, kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.325-331
    • /
    • 2001
  • The critical micelle concentration (CMC) at which micelles start to form from a surfactant solution is usually measured in terms of conventional concentration units. However, the thermodynamic potentials are expressed in terms of mole fraction $X_{CMC}$ and $X_{CMC}$ cannot be directly measured experimentally. The Gibbs free energy, ${\Delta}G^{\ast}_{mic}$, in particular is related to $X_{CMC}$ through ${\Delta}G^{\ast}_{mic}$ = $RTlnX_{CMC}$. When it comes to CMC, the molar CMC, $C_{CMC}$, differs only by the proportionality $C^{-1}_{w}$ with $C_{w}$ being the molarity of water. Hence, $C_{CMC}$ is found to be a proper representation of CMC. However, in calculation of ${\Delta}G^{\ast}_{mic}$ and other thermodynamic potentials from the CMC, $X_{CMC}$ or $C_{CMC}/C_{w}$ should be used.

Effects of Polyacrylamide (PAM) and Potassium-Carboxymethylcellulose (K-CMC) on Soil and Yield of Cabbage (Brassica oleracea L. cv. Empire) (PAM과 K-CMC처리가 토양의 이화학성 및 양배추의 수량에 미치는 영향)

  • Kim, Seog-Kyun;Kim, Kyung-Je
    • Horticultural Science & Technology
    • /
    • v.16 no.2
    • /
    • pp.222-225
    • /
    • 1998
  • The objective of this study was to observe the effects of potassium-carboxymethyl cellulose (K-CMC), which is a natural polymer derivative, and polyacrylamide (PAM), which is a commercial synthetic polymer, on soil physicochemical properties and yields of the cabbage. To increase water absorbing capacity (WAC), hydrophilic carboxymethyl group was introduced to cellulose chain and it was confirmed by FT-IR. WAC was tested by tea-bag method in distilled water and 3% NaCl solution. PAM is slightly more absorptive than K-CMC in distilled water, but in NaCl solution, K-CMC is more absorptive than PAM. Soil particle sizes above $1_{mm}$ were immediately increased from 9.6 to approximately 16.6% by the application of K-CMC and PAM, respectively. Infiltration rates of soil were approximately twice as great as those of the control when conditioned with the K-CMC and PAM treatment. K content of soil treated with K-CMC was significantly higher than those of PAM and control, but the other components of soil chemical properties were not different. The early growth and vegetative production of cabbage in the K-CMC and PAM treatments were significantly higher than the control. The contents of vitamin C were increased with the treatment of K-CMC. It was proposed that K-CMC treatment influence K component of the soil and vitamin C content of the cabbage, therefore, it improved the yields as well as crop quality.

  • PDF

Light Scattering Studies on the Second CMC of the Aqueous Solution of Dodecyl Pyridinium Chloride and Tetradecyl Pyridinium Chloride (光散亂에 依한 Dodecyl Pyridinium Chloride 및 Tetradecyl Pyridinium Chloride 水溶液의 第二 CMC에 關한 硏究)

  • Moo Ill Chung;In Ja Tak;Kun Moo Lee
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.398-402
    • /
    • 1975
  • The light scattering studies of the aqueous solution of dodecyl pyridinium chloride (DPC) and tetradecyl pyridinium chloride (TPC) over the concentration range of 0~70 mM revealed that there exists a so-called 2nd critical micelle concentration (cmc) at about 43 mM and 8 mM respectively in addition to their 1st cmc at 17 mM and 3.5 mM. The 2nd cmc was greatly influenced by additives KCl, which lowered the 2nd cmc. The micelle molecular weight of DPC and TPC solutions at 1st cmc were 20800 and 15600 and the degree of ionization of their micelles at 1st cmc were 0.092 and 0.226 respectively.

  • PDF

Viscosity and Wettability of Carboxymethylcellulose(CMC) solutions and Artificial Saliva (Carboxymethylcellulose(CMC) 용액과 인공 타액의 점도와 습윤성)

  • Park, Moon-Soo;Kim, Young-Jun
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.4
    • /
    • pp.365-373
    • /
    • 2007
  • Destruction of oral soft and hard tissues and resulting problems seriously affect the life quality of xerostomic patients. Although artificial saliva is the only regimen for xerostomic patients with totally abolished salivary glands, currently available artificial salivas give restricted satisfaction to patients. The purpose of this study was to contribute to the development of ideal artificial saliva through comparing viscosity and wettability between CMC solutions and human saliva. Commercially-available CMC is dissolved in simulated salivary buffer (SSB) and distilled deionized water (DDW). Various properties of human whole saliva, human glandular saliva, and a CMC-based saliva substitutes known as Salivart and Moi-Stir were compared with those of CMC solutions. Viscosity was measured with a cone-and-plate digital viscometer at six different shear rates, while wettability on acrylic resin and Co-Cr alloy was determined by the contact angle. The obtained results were as follows: 1. The viscosity of CMC solutions was proportional to CMC concentration, with 0.5% CMC solution displaying similar viscosity to stimulated whole saliva. Where as a decrease in contact angle was found with increasing CMC concentration. 2. The viscosity of human saliva was found to be inversely proportional to shear rate, a non-Newtonian (pseudoplastic) trait of biological fluids. The mean viscosity values at various shear rates increased as follows: stimulated parotid saliva, stimulated whole saliva, unstimulated whole saliva, stimulated submandibular-sublingual saliva. 3. Contact angles of human saliva on the tested solid phases were inversely correlated with viscosity, namely decreasing in the order stimulated parotid saliva, stimulated whole saliva, unstimulated whole saliva, stimulated submandibular-sublingual saliva. 4. Boiled CMC dissolved in SSB (CMC-SSB) had a lower viscosity than CMC-SSB (P < 0.01 at shear rate of $90s^{-1}$). 5. For human saliva, contact angles on acrylic resin were significantly lower than those on Co-Cr alloy (P < 0.01). 6. Comparing CMC solutions with human saliva, the contact angles between acrylic resin and human saliva solutions were significantly lower than those between acrylic resin and CMC solutions, including Salivart and Moi-Stir (P <0.01). The effectiveness of CMC solutions in terms of their rheological properties was objectively confirmed, indicating a vital role for CMC in the development of effective salivary substitutes.

Effect of CMC-Environment and Interaction-Types on the Achievement and Satisfaction in the Teaching and Learning of Science (CMC 환경과 상호작용 유형이 과학성취도와 만족도에 미치는 효과)

  • Lee, Jeong-Sun;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.24 no.7
    • /
    • pp.625-634
    • /
    • 2003
  • This study was designed to analyze the differences in science achievement and satisfaction between the environments of Face-To-Face (FTF) and Computer Mediated Communication (CMC), and between the interactions of Teacher-Students (TS) and Students-Students (SS). The activities for the interaction in the FTF and the CMC were carried out in the environments of traditional classrooms and the on-line network of communication computer, respectively. These experiments for four different groups (CMC-TS, CMC-SS, FTF-TS and FTF-SS) were performed with respect to 103 students of three 10th grade classes at a girls' high school in Chungju city. The questionnaires were composed of 5questions for achievement, and 13 questions on Likert scale for satisfaction. The data was analyzed using ANOVA, and through examination of each question about the satisfaction. The mean of the science achievement in learning activity was significantly higher in the CMC environment than the FTF. Also, the score in the TS interaction was meaningfully higher than the SS. Under the common environment of the CMC, science achievement and satisfaction in the TS interaction were significantly higher than in the SS. A similar result has been obtained in the satisfaction case even in the common environment of the FTF. The itemized analysis for the satisfaction shows a high score in the individual condition of CMC and TS, compared to that of FTF and SS, respectively. Thus, the school activity, formed in the TS interaction in the CMC environment is more effective at improving science achievement and satisfaction in the teaching and learning of science.

Fabrication of CMC+PTFE Electrode and it's Electrochemical Performances (CMC+PTFE 혼합바인더 전극의 제조 및 전기화학적 특성)

  • Kim, Ick-Jun;Lee, Sun-Young;Moon, Seong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1248-1253
    • /
    • 2004
  • This work describes the effect of electrode binder on the characteristics of electric double layer capacitor Among carboxymethylcellulose (CMC), Polyvinylpyrrolidone (PVP), Polyvinyl Alcohol (PVA), and Polyvinylidene Fluoride (PVDF), the unit cell using CMC showed good rate capability between $2.5mA/cm^2{\sim}100mA/cm^2$ current density. However, CMC as a binder is incongruent, because the electrode bound with CMC is rigid and easy to crack during a press and winding process for fabrication of capacitor. The unit cell capacitor using the electrode bound with binary binder composed of CMC and Polytetrafluoroethylene (PTFE), especially in composition CMC : PTFE : 60 : 40 wt.%, has exhibited the better mechanical properties than those of the unit cell with CMC. On the other hand, it was also noted that the mechanical properties of CMC+PTFE electrode, coated on underlayer composed of CMC and carbon black, were much improved the binding force.

  • PDF

Electric and Mechanical Properties of CMC+PTFE Binary Binder Electrode for Electric Double Layer Capacitor (EDLC용 CMC+PTFE 혼합바인더 전극의 전기적, 기계적 특성)

  • Kim, Ick-Jun;Lee, Sun-Young;Moon, Seong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1079-1084
    • /
    • 2004
  • This work describes the effect of electrode binder on the characteristics of electric double layer capacitor. Among carboxymethylcellulose (CMC), Polyvinylpyrrolidone (PVP), Polyvinyl Alcohol (PVA), and Polyvinylidene Fluoride (PVDF), the unit cell using CMC showed good rate capability at current densities between 2.5 mA/$\textrm{cm}^2$~100 mA/$\textrm{cm}^2$. However, CMC as a binder is incongruent, because the electrode bound with CMC is rigid and easy to crack during a press and winding process for fabrication of capacitor. The unit cell capacitor using the electrode bound with binary binder composed of CMC and Polytetrafluoroethylene (PTFE), especially in composition CMC : PTFE =60 : 40 wt.%, has exhibited the better mechanical properties than those of the unit cell with CMC. On the other hand, the mechanical properties of CMC+PTFE electrode, coated on underlayer composed of CMC and carbon black, were much improved.

Synthesis and Biocompatibility of PVA/NaCMC Hydrogels Crosslinked by Cyclic Freezing/thawing and Subsequent Gamma-ray Irradiation

  • Shin, Ji-Yeon;Jeong, Heeseok;Lee, Deuk Yong
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.161-167
    • /
    • 2018
  • Polyvinyl alcohol/sodium carboxymethyl cellulose (PVA/NaCMC) hydrogels were prepared by physical crosslinking (cyclic freezing/thawing) and gamma (${\gamma}$)-ray irradiation to evaluate the effect of NaCMC concentration (2~8 wt%) on the mechanical properties and the biocompatibility of the PVA/NaCMC hydrogels. The swelling rate of PVA/NaCMC hydrogels regardless of irradiation rose with increasing NaCMC content from 2 wt% to 8 wt%, while the gelation rate was the reverse. As the NaCMC content increased from 2 wt% to 6 wt%, the compressive strength of the hydrogels increased dramatically from $8.5{\pm}2.0kPa$ to $52.7{\pm}2.5kPa$ before irradiation and from $13.5{\pm}2.9kPa$ to $65.5{\pm}8.7kPa$ after irradiation. When 8 wt% NaCMC was added afterwards, the compressive strength decreased however. The irradiated PVA/NaCMC hydrogels containing 6 wt% NaCMC exhibited the tailored properties of the swelling rate of $118{\pm}3.7%$, the gelation rate of $71.4{\pm}1.3%$, the strength of $65.5{\pm}8.7kPa$, respectively, and no cytotoxicity was observed.