• Title/Summary/Keyword: CMB model

Search Result 44, Processing Time 0.023 seconds

Validation of the emission inventory of volatile organic compounds in Seoul (서울의 휘발성유기화합물 배출량 자료 검증)

  • Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.139-148
    • /
    • 2009
  • In Seoul, the largest emission source for volatile organic compounds (VOCs) based on the emission inventory is solvent usage followed by vehicular exhaust. However, according to a CMB modeling result by Na and Kim (2007), vehicular exhaust was the largest emission source followed by solvent usage. Detailed analyses on the validity of the CMB model result were carried out and it was suggested that the existing emission inventory for VOCs might be underestimating vehicular emission. Scientific considerations that should be considered for the effective control strategy against VOCs are discussed.

  • PDF

Development of a Receptor Methodology for Quantitative Assessment of Ambient PM-10 Sources in Suwon Area (수원지역 대기 중 PM-10 오염원의 정량평가를 위한 수용방법론의 개발)

  • 김관수;황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.119-131
    • /
    • 2001
  • A total of 328 ambient PM-10 samples was collected by a PM-10 high volume air sampler during the periods of February 1997 to February 1999 from Kyung Hee University at Suwon Campus. The samples were analyzed for their bulk chemical compositions(Cu, Fe, Pb, Zn, Al, $Na^{+}$, $NH_{4}^{+}$, $K^{+}$, $Ca^{2+]$, $Mg^{2+}$, $Cl^{-}$, $NO_{3}^{-}$, and $SO_{4}^{2-}$ by both an atomic absorption spectrophotometer and an ion chromatograph. The purpose of this study was t develop a receptor methodology for quantitative assessment of PM-10 sources. The data obtained from this study were ex-tensively examined using the target transformation factor analysis(TTFA) and the chemical mass balance (CMB). When TTFA was initially applied seasonal basis. five sources(such as automobile-related, sulfate-related, incine-ration, soil and combustion-related) were identified both during winter and fall. Since the total number and the type of sources were resolved by TTFA for the four seasons, CMB was employed to cross-check the results of TTEA. The total of six source categories identified by TTEA was intensively investigated on the basis of source profiles acquired from various source libraries established both in Korea and abroad. The results of this study showed the applicability of two popular receptor models as a new methdology for quantitative assessment PM-10 sources in Korea. Seasonally segmented data sets with the combined application of TTFA and CMB yielded a physically reasonable source apportionment result and provided a mean to increase the number of potential sources. Furthermore, this study suggested the possibility of the CMB application to ambi-ent data from Korea after identifying potential sources through traditional factor analysis.

  • PDF

A Study on the PM2.5 Source Characteristics Affecting the Seoul Area Using a Chemical Mass Balance Receptor Model (수용모델을 이용한 서울지역 미세입자 (PM2.5)에 영향을 미치는 배출원 특성에 관한 연구)

  • Lee Hak Sung;Kang Choong-Min;Kang Byung-Wook;Lee Sang-Kwun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.329-341
    • /
    • 2005
  • The purpose of this study is to study the $PM_{2.5}$ source characteristics affecting the Seoul area using a chemical mass balance (CMB) receptor model. This study was also to evaluate the $PM_{2.5}$ source profiles, which were directly measured and developed. Asian Dust Storm usually occurred in the spring, and very high $PM_{2.5}$ concentrations were observed in the fall among the sampling periods. So the ambient data collected in the spring and fall were evaluated. The CMB model results as well as the $PM_{2.5}$ source profiles were validated using the diagnostic categories, such as: source contribution estimate, t-statistic, R-square, Chi-square, and percent of total mass explained. In the spring months, the magnitude of $PM_{2.5}$ mass contributors was in the following order: Chinese aerosol $(31.7\%)>$ secondary aerosols ($22.3\%$: ammonium sulfate $13.4\%$ and ammonium nitrate $8.9\%)>$ vehicles ($16.1\%$: gasoline vehicle $1.4\%$ and diesel vehicles $14.7\%)>$biomass burning $(15.5\%)>$ geological material $(10.5\%)$. In the fall months, the general trend of the $PM_{2.5}$ mass contributors was the following: biomass burning $(31.1\%)>$ vehicles ($26.9\%$: gasoline vehicle $5.1\%$ and diesel vehicles $21.8\%)>$ secondary aerosols ($23.0\%$: ammonium sulfate $9.1\%$ and ammonium nitrate $13.9\%)>$ Chinese aerosol $(10.7\%)$. The results show that the $PM_{2.5}$ mass in the Seoul area was mainly affected by the Chinese area.

Characterization of Inorganic Chemicals in Total Suspended Particulates and a Source Apportionment by Chemical Mass Balance Model (대기 분진의 무기 화학적 조성 분석과 Chemical Mass Balance에 의한 오염원 기여도 산출)

  • Seo, Young-Hwa;Koo, Ja-Kong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.112-120
    • /
    • 1992
  • Twenty four metal, nonmetal elements and 4 major anions in total suspended particulates (TSP) collected at two sites in Daejon city from october to december in 1991 by a Hi-vol sampler were thoroughly analyzed by Inductively Coupled Plasma/ Atomic Emission Spectrometry (ICP/AES) and Ion Chromatography (IC). These analyzed data were used to perform a receptor modeling using the Chemical Mass Balance (CMB) for the source apportionment of TSP sample. Approximately 60% TSP weight in industrial complex area was influenced by potential industrial sources and 25% was by heating fuels and automobile emissions, whereas a half of TSP in residential area was influenced by surrounding environment and more than 35% of TSP was influenced by heating fuels. The CMB model provided source apportionment results reasonably and scientifically with a minor limitation.

  • PDF

Source Apportionment of Fine Particulate Matter (PM2.5) in the Chungju City (충주시 초미세먼지 (PM2.5)의 배출원 기여도 추정에 관한 연구)

  • Kang, Byung-Wook;Lee, Hak Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.437-448
    • /
    • 2015
  • The purpose of this study is to present the source contribution of the fine particles ($PM_{2.5}$) in Chungju area using the CMB (chemical mass balance) method throughout the four seasons in Korea. The Chungju's annual average level of $PM_{2.5}$ was $48.2{\mu}g/m^3$, which exceeded two times higher than standard air quality. Among these particles, the soluble ionic compounds represent 54.2% of fine particle mass. Additionally, the OC concentration in Chungju stayed similar to other domestic cities, while the EC concentration decreased significantly compared to other domestic/international cities. The concentration of sulfur represented the highest composition (8%) among the fine particle compounds. According to the CMB results, the general trend of the $PM_{2.5}$ mass contributors was the following: secondary aerosols (50.5%: ammonium sulfate 26.5% and ammonium nitrate 24.0%) > gasoline vehicle (18.3%) > biomass burning (11.0%) > industrial boiler (6.0%) > diesel vehicles (4.4%). The contribution of the secondary aerosols was the main cause than others. This impact is assumed to be emitted from air pollutants of urban cities or neighbor countries such as China.

Model-independent reconstruction of the equation of state of dark energy

  • Hwang, Seung-gyu;L'Huillier, Benjamin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.69.1-69.1
    • /
    • 2020
  • While Dark Energy is one of the explanations for the accelerating expansion of the Universe, its nature remains a mystery. The standard (flat) ΛCDM model is consistent with cosmological observations: type Ia Supernova, BAO, CMB, and so on. However, the analysis of observations assuming a model, model-dependent approach, is likely to bias the results towards the assumed model. In this poster, I will introduce model-independent approach with Gaussian process and the application of Gaussian process regression to reconstruct the equation of state of dark energy.

  • PDF

A Study on the Source Apportionment of the Atmospheric Fine Particles in Jeju area (제주지역 미세먼지의 오염원 규명에 관한 연구)

  • Hu, Chul-Goo;Yang, Su-Mi;Lee, Ki-Ho
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.217-225
    • /
    • 2003
  • Samples of size-fractionated PM10 (airborne particulate matter with aerodynamic diameter less than $10\mu\textrm{m}$) were collected at an urban site in Jeju city from May to September 2002. The mass concentration and chemical composition of the samples were measured. The data sets were then applied to the CMB receptor model to estimate the source contribution of PM10 in Jeju area. The average PM10 mass concentration was 28.80$\mu\textrm{g}/m^3$ ($24.6~33.49\mu\textrm{g}/m^3$), and the FP (fine particle with aerodynamic diameter less than $2.l\mu\textrm{m}$ fraction in PM10 was approximately 8% higher than the CP (coarse particle with aerodynamic diameter greater than $2.l\mu\textrm{m}$ and less than $10\mu\textrm{m}$ fraction in PM10. The CP composition was obviously different from the FP composition, that is, the most abundant water soluble species was nitrate ion in the FP, but sulfate ion in the CP. Also sulfur was the most dominant element in the FP, however, sodium was that in the CP. From CMB receptor model results, it was found that road dust was the largest contributor to the CP mass concentration (45% of the CP) and ammonium nitrate, domestic boiler, and marine aerosol were major sources to the CP mass. However, the secondary aerosol was the most significant contributor to the FP mass concentration (45% of the FP). In this study, it was suggested that the contributions of soil dust and gasoline vehicle became very low due to collinearity with road dust and diesel vehicle, respectively.

Characteristics of the Fine Particle and Source Apportionments using the CMB model in Seoul Area (서울시 미세입자 특성 및 CMB 모델을 이용한 배출원 기여도 산정)

  • 강충민;이학성;강병욱;이상권;선우영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.57-58
    • /
    • 2003
  • 대기중 입자상 물질은 대기중에서 발견될 수는 고체 및 액체상 물질로서 여러 가지 형태를 띄고 있다. 이러한 입자상 물질은 다양한 배출원인 자동차, 공장굴뚝, 가정난방 등과 같은 화석연료 연소시설과 토양 도로먼지, 건설현장, 해염입자 등과 같은 비 연소시설에서 배출되어 직접적으로 대기중으로 유입되기도 하며, 대기중 기체상 물질들이 태양광선 및 수증기의 존재하에서 화학반응을 일으켜 생성되는 이차입자도 있다. 미국 EPA (Environmental Production Agency)에서는 대기중 입자상 물질을 입경에 따라 두가지 형태인 PM$_{2.5}$와 PM$_{10}$으로 분류하였다. (중략)략)

  • PDF