Browse > Article

A Study on the PM2.5 Source Characteristics Affecting the Seoul Area Using a Chemical Mass Balance Receptor Model  

Lee Hak Sung (Department of Environmental, Civil and Information System, Seowon University)
Kang Choong-Min (Department of Environmental Health, Harvard School of Public Health, Harvard University)
Kang Byung-Wook (Department of Environmental Industry, Chongju National College of Science and Technology)
Lee Sang-Kwun (Department of Environmental Science, Hankuk University of Foreign Studies)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.21, no.3, 2005 , pp. 329-341 More about this Journal
Abstract
The purpose of this study is to study the $PM_{2.5}$ source characteristics affecting the Seoul area using a chemical mass balance (CMB) receptor model. This study was also to evaluate the $PM_{2.5}$ source profiles, which were directly measured and developed. Asian Dust Storm usually occurred in the spring, and very high $PM_{2.5}$ concentrations were observed in the fall among the sampling periods. So the ambient data collected in the spring and fall were evaluated. The CMB model results as well as the $PM_{2.5}$ source profiles were validated using the diagnostic categories, such as: source contribution estimate, t-statistic, R-square, Chi-square, and percent of total mass explained. In the spring months, the magnitude of $PM_{2.5}$ mass contributors was in the following order: Chinese aerosol $(31.7\%)>$ secondary aerosols ($22.3\%$: ammonium sulfate $13.4\%$ and ammonium nitrate $8.9\%)>$ vehicles ($16.1\%$: gasoline vehicle $1.4\%$ and diesel vehicles $14.7\%)>$biomass burning $(15.5\%)>$ geological material $(10.5\%)$. In the fall months, the general trend of the $PM_{2.5}$ mass contributors was the following: biomass burning $(31.1\%)>$ vehicles ($26.9\%$: gasoline vehicle $5.1\%$ and diesel vehicles $21.8\%)>$ secondary aerosols ($23.0\%$: ammonium sulfate $9.1\%$ and ammonium nitrate $13.9\%)>$ Chinese aerosol $(10.7\%)$. The results show that the $PM_{2.5}$ mass in the Seoul area was mainly affected by the Chinese area.
Keywords
CMB receptor model; Seoul;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wadden, R.A., H.S. Lee, P.A. Scheff, and J. Lin (1993) Sulfur and nitrogen balances for the Chicago area by receptor modeling, presentation at the 86nd Annual Meeting of Air & Waste Manage. Assoc., Denver, Colorado, June 93-TP-41B.05
2 Watson, J.G. and J.C. Chow (2001) Source characterization of major emissions sources in the Imperial and Mexicali Valleys along the U.S./Mexico border, The Sci. of The Total Environ., 276, 33-47   DOI   PUBMED   ScienceOn
3 강병옥, 이학성, 김희강(2000) 수용모델을 이용한 청주시 미세입자($PM_{2.5}$)의 기여도 측정, 한국대기환경학회지,16(5),477-485
4 강병욱, 이학성, 김희강 (1997) PIXE를 이용한 청주지역 미세입자 중 원소의 계절 변동 특성,한국대기환경 학회지,13(4),307-317
5 이학성, 강병옥 (2000) 미세입자($PM_{2.5}$)에 포함된 탄소농도 계절 특성, 한국대기환경학회지,16(2) 103-112
6 Chen, K.S., C.F. Lin, and Y.M. Chou (2001) Determination of source contributions to ambient $PM_{2.5}$ in Kaohsiung, Taiwan, using a receptor model, J. Air & Waste Manage. Assoc., 51,489-498   DOI   PUBMED   ScienceOn
7 Duan, F., X. Liu, T. Yu, and H. Cachier (2004) Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing, Atmos. Environ., 38, 1275-1282   DOI   ScienceOn
8 Kang, C.M., Y. Sunwoo, H.S. Lee, B.W. Kang, and S.K. Lee (2004a) Atmospheric concentrations of $PM_{2.5}$ trace elements in the Seoul urban area of South Korea, J. Air & Waste Manage. Assoc., 54, 432-439   DOI   PUBMED   ScienceOn
9 강충민 (2003a) 서울시 미세입자 특성 및 CMB모델을 이용 한 배출원 기여도 산정에 관한 연구, 건국대학교 박사학위논문
10 Watson, J.G., N.F. Robinson, C. Lewis, and T. Coulter (1997) Chemical mass balance receptor model version 8 (CMBS) user's manual, U.S. EPA/DRI
11 강충민 (2003b) 서울시 미세입자 특성 및 CMB모델을 이용 한 배출원 기여도 산정,2003년도 한국대기환경학회 춘계학술대회 논문집,57-58
12 Watson, J.G., J.C. Chow, Z. Lu, E.M. Fujita, D.H. Lowenthal, and D.R. Lawson (1994) Chemical mass balance source apportionment of $PM_{10}$ during the Southern California Air Quality Study, Aerosol Sci. Technol., 21, 1-36   DOI   ScienceOn
13 Lee, H.S., R.A. Wadden, and P.A. Scheff (1993) Measurement and evaluation of acid air pollutants in Chicago using an annular denuder system, Atmos. Environ., 27A(4), 543-553
14 Chan, Y.C., R.W. Simpson, G.H. Mctainsh, P.D. Vowles, D.D. Cohen, and G.M. Bailey (1999) Source apportionment of $PM_{2.5}$and $PM_{10}$ aerosols in Brisbane (Australia) by receptor modelling, Atmos. Environ., 33(1999), 3251-3268   DOI   ScienceOn
15 Spengler, J.D., M. Brauer, and P. Koutrakis (1990) Acid air and health, Environ. Sci. Technol., 24(7), 946-956   DOI
16 이학성, 강충민, 강병옥, 이상권 (2004) 미세입자($PM_{2.5}$)의 배 출원 구성물질 성분비 개발에 관한 연구, 한국대기환경학회지,20(3) 317-330
17 Seinfeld, J.H. (1986) Atmospheric chemistry and physics of air pollution, Wiley Interscience, New York, NY
18 Dockery, D.W., J. Chunningham, A.I. Damokosh, L.M. Neas, J.D. Spengler, P. Koutrakis, J.H. Ware, M. Raizenne, and F.E. Speizer (1996) Health effects of acid aerosols on north American children: Respiratory symptoms, Environ. Health Perspect., 104(5), 500-505   DOI   ScienceOn
19 Malm, W.C. and K.A. Gebhart (1996) Source apportionment of organic and light absorbing carbon using receptor modeling techniques, Atmos. Environ., 30 (6). 843-855   DOI   ScienceOn
20 Kang, C.M., H.S. Lee, B.W. Kang, S.K. Lee, and Y. Sunwoo (2004b) Chemical characteristics of acidic gas pollutants and $PM_{2.5}$ species during hazy episodes in Seoul, South Korea, Atmos. Environ., 38, 4749-4760   DOI   ScienceOn
21 Park, S.S. and Y.J. Kim (2004) $PM_{2.5}$ particles and sizesegregated ionic species measured during fall season in three urban sites in Korea, Atmos. Environ., 38, 1459-1471   DOI   ScienceOn
22 Lee, H.S. and B.W. Kang (2001) Chemical characteristics of principal $PM_{2.5}$ species in Chongju, South Korea, Atmos. Environ., 35,739-746   DOI   ScienceOn
23 김기현, 김민영, 신재영, 최규훈, 강창희 (2002) $PM_{2.5}$, $PM_{10}$, TSP의 시간대별 관측결과에 기초한 황사기간 충 분진의 분포특성에 대한 고찰 서울시의 4대 관 측점을 중심으로 한 2001년 봄철 황사 기간에 대한 사례연구, 한국대기환경학회지, 18(5),419-426
24 Conner ,W.D., R.L. Bennett, W.S. Weathers, and W.E. Wilson (1991) Particulate characteristics and visual effects of the atmosphere at Research Triangle Park, J. Air & Waste Manage. Assoc., 41(2), 154-160   DOI
25 Zelenka, M.P., W.E. Wilson, J.C. Chow, and P.J. Lioy (1994) A combined TTFA/CMB receptor modeling approach and its application to air pollution sources in China, Atmos. Environ., 28(8), 1425-1434   DOI   ScienceOn
26 서울시 홈페이지 (2004) http://www.seoul.go.kr
27 Chow, J.C., J.G. Watson, D.H. Lowenthal, and R.J. Countess (1996) Source and chemistry of $PM_{10}$ aerosol in Santa Barbara county, CA, Atmos. Environ., 30(9), 1489- 1499   DOI   ScienceOn
28 서울시 환경백서(2003)
29 He, K., F. Yang, Y. Ma, Q. Zhang, X. Yao, C.K. Chan, S. Cadle, T. Chan, and P. Mulawa (2001) The characteristics of $PM_{2.5}$ in Beijing, China, Atmos. Environ., 35, 4959-4970   DOI   ScienceOn
30 이학성, 강병욱(1996) 디누더 측정기를 이용한 여름철 청주 시의 산성오염물질 측정과 분석, 한국대기보전학회지,12(4),441-448
31 Chung, Y.S. and M.B. Yoon (1994) On the occurrence of yellow sand and atmospheric loadings, Atmos. Environ., 30(13), 233-244
32 Park, S.S., M.S. Bae, and Y.J. Kim (2001) Chemical composition and source apportionment of $PM_{2.5}$ particles in the Sihwa area, Korea, J. Air & Waste Manage. Assoc., 51,393-405   DOI   PUBMED   ScienceOn