• Title/Summary/Keyword: CMAQ/WRF

Search Result 40, Processing Time 0.028 seconds

Analysis on the Characteristics of PM10 Variation over South Korea from 2010 to 2014 using WRF-CMAQ: Focusing on the Analysis of Meteorological Factors (기상-대기질 모델을 활용한 2010~2014년 우리나라 PM10 변동 특성 분석: 기상 요인을 중심으로)

  • Nam, Ki-Pyo;Lee, Dae-Gyun;Park, Ji-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.5
    • /
    • pp.509-520
    • /
    • 2018
  • The impact of meteorological condition on surface $PM_{10}$ concentrations in South Korea was quantitatively simulated from 2010 to 2014 using WRF (ver.3.8.1) and CMAQ (5.0.2) model. The result showed that seasonal standard deviations of PM10 induced by change of weather conditions were $4.8{\mu}g/m^3$, $1.7{\mu}g/m^3$, $1.7{\mu}g/m^3$, $4.2{\mu}g/m^3$ for spring, summer, autumn and winter compared to 2010, respectively, with the annual mean standard deviation of about $2.6{\mu}g/m^3$. The results of 18 regions in South Korea showed standard deviation of more than $1{\mu}g/m^3$ in all regions and more than $2{\mu}g/m^3$ in Seoul, Northern Gyeonggi, Southern Southern Gyeonggi, Western Gangwon and Northern Chungcheong in South Korea.

Numerical Study on the Ozone Formation Sensitivity of Precursors Using Adjoint Model around the South-eastern Area of the Korean Peninsula (수반모형을 이용한 한반도 남동지역의 오존 전구물질의 오존 생성 민감도에 관한 수치연구)

  • Park, Soon-Young;Lee, Soon-Hwan;Lee, Hwa Woon;Kim, Dong-Hyeok
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.669-680
    • /
    • 2013
  • Ozone sensitivity analysis with respect to $NO_x$ is conducted around the south-eastern area of the Korean Peninsula. WRF-CMAQ modeling system is used to simulate a local circulation and high ozone episode day. To analyze the sensitivity, the adjoint model for CMAQ is adopted in this study. The purpose of current study is to investigate the location that affects a day time ozone concentration of these receptors on the high ozone episode day. Adjoint sensitivity analysis for Daegu shows two areas of influence. One is the range from the neighboring location to Pohang and it affects mainly on the same day as receptor time. The other is the remote south-eastern area from Daegu. This remote influence area suggests that $NO_x$ emitted on the previous day can change the ozone concentration at receptor time. The influence area for Busan, on the other hand, is originated only from the emission on the previous day because the sea-breeze occurred on the episode day makes low influence of surrounding emission. The cross sectional analysis reveals that $NO_x$ advection is important not only near the surface of land but also around the height of boundary layer.

Analysis of the Changesin PM2.5 Concentrations using WRF-CMAQ Modeling System: Focusing on the Fall in 2016 and 2017 (WRF-CMAQ 모델링 시스템을 활용한 PM2.5 농도변동 원인 분석: 2016년과 2017년의 가을철을 중심으로)

  • Nam, Ki-Pyo;Lim, Yong-Jae;Park, Ji-Hoon;Kim, Deok-Rae;Lee, Jae-Bum;Kim, Sang-Min;Jung, Dong-Hee;Choi, Ki-Chul;Park, Hyun-Ju;Lee, Han-Sol;Jang, Lim-Seok;Kim, Jeong-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.2
    • /
    • pp.215-231
    • /
    • 2018
  • It was analyzed to identify the cause of $PM_{2.5}$ concentration changes for the fall in 2016 and 2017 in South Korea using ground measurement data such as meterological variables and $PM_{2.5}$, AOD from GOCI satellite, and WRF-CMAQ modeling system. The result of ground measurement data showed that the $PM_{2.5}$ concentrations for the fall in 2017 decreased by 12.3% ($3.0{\mu}g/m^3$) compared to that of 2016. The difference of $PM_{2.5}$ concentrations between 2016 and 2017 mainly occurred for 11 Oct. - 20 Oct. (CASE1) and 15 Nov. - 19 Nov. (CASE2) when weather conditions were difficult to long-range transport from foreign regions and favored atmospheric ventilation in 2017 compared to 2016. Simulated $PM_{2.5}$ concentrations in 2017 decreased by 64.0% ($23.1{\mu}g/m^3$) and 35.7% ($12.2{\mu}g/m^3$) during CASE1 and CASE2, respectively. These results corresponded to the changes in observed $PM_{2.5}$ concentrations such as 53.6% for CASE1 and 47.8% for CASE2. It is implied that the changes in weather conditions affected significantly the $PM_{2.5}$ concentrations for the fall between 2016 and 2017. The contributions to decreases in $PM_{2.5}$ concentrations was assessed as 52.8% by long-range transport from foreign regions and 47.2% by atmospheric ventilation effects in domestic regions during CASE1, whereas their decreases during CASE2 were affected by 66.4% from foreign regions and 33.6% in domestic regions.

Numerical Study on the Process Analysis of Ozone Production due to Emissions Reduction over the Seoul Metropolitan Area (수도권 배출량 저감에 따른 오존 발생 과정 분석에 관한 수치연구)

  • Jeong, Yeo-Min;Lee, Soon-Hwan;Lee, Hwa-Woon;Jeon, Won-Bae
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.339-349
    • /
    • 2012
  • In order to clarify the impact of emissions reductions on the air quality over Metropolitan area of Korean Peninsula, several numerical experiment and analysis of integrated process rate(IPR) of ozone were carried out. Numerical models used in this study are WRF for the estimate the meteorological elements and CMAQ for assessment of ozone concentration. As result in the sensitive test of VOC/NOx reduction experiments, although VOC reduction tends to induce the different impact on the advection and photochemical reaction rate of ozone in urban area and rural area, the mechanism of ozone appeared to be more sensitive to the reduction of VOC than that of NOx over the metropolitan and its surround area. So the control of VOC emission inventories is an effective means to decrease the ozone concentrations around this area.

Numerical Study on the Impact of Regional Warming on the Meterological Field and Ozone Concentration over the South-Eastern Part of the Korean Peninsula (기후변화에 따른 기온상승이 한반도 동남지역 국지 기상장과 오존 분포에 미치는 영향에 관한 수치모의)

  • Jeong, Yeo-Min;Lee, Hwa-Woon;Lee, Soon-Hwan;Choi, Hyun-Jung;Jeon, Won-Bae
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1431-1445
    • /
    • 2010
  • In order to clarify the impact of regional warming on the meteorological field and air quality over southeastern part of Korean Peninsula, several numerical experiment were carried out. Numerical models used in this study are WRF for the estimate the meteorological elements and CMAQ for assessment of ozone concentration. According to the global warming impact, initial air temperature were changed and its warming rate reach at 2 degree which was based on the global warming scenarios provided by IPCC. The experiments considering the global warming at initial stage were presented as case T_UP. Air temperature over inland area during night time for case T_UP is higher than that for Base case. During time since the higher temperature over inland area is maintained during daytime more intensified sea breeze should be induced and also decrease the air temperature in vicinity of coast area. In case of T_UP, high level concentrations ozone distribution area was narrowed and their disappearance were faster after 1800LST. As a results, wind and temperature fields due to the global warming at initial stage mainly results in the pattern of ozone concentration and its temporal variation at South-Eastern Part of the Korean Peninsula.

A Study on the Outbreak and Transport Processes of the Severe Asian Dust Event Observed in March 2010 (2010년 3월 극심한 황사사례의 발생 및 수송과정에 관한 연구)

  • Kim, Sukwoo;Song, Sang-Keun;Han, Seung-Bum
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.3
    • /
    • pp.256-271
    • /
    • 2016
  • The source and transport of the severe Asian dust event (ADE) recently observed in the Korean peninsula were analyzed based on observations (surface weather charts and satellite data) and modeling study (WRF-CMAQ modeling systems). The ADE occurred on 20-21 March 2010 in South Korea with very high $PM_{10}$ concentrations (up to approximately $3,000{\mu}g/m^3$ in Daegu and Jeju). The dominant meteorological conditions affecting the dust outbreak and transport processes were found to be associated with the two synoptic features: (1) strong airflows (i.e., westerlies) induced by a strong pressure gradient resulting from a dense isobar pattern (west-high and east-low) between Tuva Republic and Mongolia and (2) a rapid movement of the strong westerlies merged with airflows generated near Gobi Desert and Inner Mongolia. The merged strong westerlies with a low pressure played a pivotal role in the huge amount of AD and its transport height of 5-8 km. The time and location of dust emissions calculated in the source regions were similar to those observed in the weather charts and satellite image. The ADE simulation mostly showed agreement in the patterns and the concentration levels of modeled dust (including $PM_{10}$) with those of the observations.

A Comparison Study of Ensemble Approach Using WRF/CMAQ Model - The High PM10 Episode in Busan (앙상블 방법에 따른 WRF/CMAQ 수치 모의 결과 비교 연구 - 2013년 부산지역 고농도 PM10 사례)

  • Kim, Taehee;Kim, Yoo-Keun;Shon, Zang-Ho;Jeong, Ju-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.5
    • /
    • pp.513-525
    • /
    • 2016
  • To propose an effective ensemble methods in predicting $PM_{10}$ concentration, six experiments were designed by different ensemble average methods (e.g., non-weighted, single weighted, and cluster weighted methods). The single weighted method was calculated the weighted value using both multiple regression analysis and singular value decomposition and the cluster weighted method was estimated the weighted value based on temperature, relative humidity, and wind component using multiple regression analysis. The effects of ensemble average methods were significantly better in weighted average than non-weight. The results of ensemble experiments using weighted average methods were distinguished according to methods calculating the weighted value. The single weighted average method using multiple regression analysis showed the highest accuracy for hourly $PM_{10}$ concentration, and the cluster weighted average method based on relative humidity showed the highest accuracy for daily mean $PM_{10}$ concentration. However, the result of ensemble spread analysis showed better reliability in the single weighted average method than the cluster weighted average method based on relative humidity. Thus, the single weighted average method was the most effective method in this study case.

Numerical Analysis on Biogenic Emission Sources Contributing to Urban Ozone Concentration in Osaka, Japan

  • Nishimura, Hiroshi;Shimadera, Hikari;Kondo, Akira;Akiyama, Kazuyo;Inoue, Yoshio
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.259-271
    • /
    • 2015
  • This study conducted analyses on biogenic volatile organic compounds (BVOC) emission sources contributing to urban ozone ($O_3$) concentration in Osaka Prefecture, Japan in summer 2010 by using the Weather Research and Forecasting model (WRF) version 3.5.1 and the Community Multiscale Air Quality model (CMAQ) version 5.0.1. This prefecture is characterized by highly urbanized area with small forest area. The contributions of source regions surrounding Osaka were estimated by comparing the baseline case and zero-out cases for BVOC emissions from each source region. The zero-out emission runs showed that the BVOC emissions substantially contributed to urban $O_3$ concentration in Osaka (10.3 ppb: 15.9% of mean daily maximum 1-h $O_3$ concentration) with day-by-day variations of contributing source regions, which were qualitatively explained by backward trajectory analyses. Although $O_3$ concentrations were especially high on 23 July and 2 August 2010, the contribution of BVOC on 23 July (35.4 ppb: 25.6% of daily maximum $O_3$) was much larger than that on 2 August (20.9 ppb: 14.2% of daily maximum $O_3$). To investigate this difference, additional zero-out cases for anthropogenic VOC (AVOC) emissions from Osaka and for VOC emissions on the target days were performed. On 23 July, the urban $O_3$ concentration in Osaka was dominantly increased by the transport from the northwestern region outside Osaka with large contribution of $O_3$ that was produced through BVOC reactions by the day before and was retained over the nocturnal boundary layer. On 2 August, the concentration was dominantly increased by the local photochemical production inside Osaka under weak wind condition with the particularly large contribution of AVOC emitted from Osaka on the day.

Model Performance Evaluation and Bias Correction Effect Analysis for Forecasting PM2.5 Concentrations (PM2.5 예보를 위한 모델 성능평가와 편차보정 효과 분석)

  • Ghim, Young Sung;Choi, Yongjoo;Kim, Soontae;Bae, Chang Han;Park, Jinsoo;Shin, Hye Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • The performance of a modeling system consisting of WRF model v3.3 and CMAQ model v4.7.1 for forecasting $PM_{2.5}$ concentrations were evaluated during the period May 2012 through December 2014. Twenty-four hour averages of $PM_{2.5}$ and its major components obtained through filter sampling at the Bulgwang intensive measurement station were used for comparison. The mean predicted $PM_{2.5}$ concentration over the entire period was 68% of the mean measured value. Predicted concentrations for major components were underestimated except for $NO_3{^-}$. The model performance for $PM_{2.5}$ generally tended to degrade with increasing the concentration level. However, the mean fractional bias (MFB) for high concentration above the $80^{th}$ percentile fell within the criteria, the level of accuracy acceptable for standard model applications. Among three bias correction methods, the ratio adjustment was generally most effective in improving the performance. Albeit for limited test conditions, this analysis demonstrated that the effects of bias correction were larger when using the data with a larger bias of predicted values from measurement values.

Numerical Simulation and Comparison of Particle Dispersion and Air Quality with Domain Setting of Gwangyang Bay Area (광양만 권역의 영역 설정에 따른 입자확산 및 대기질 수치모의 비교)

  • Lee, Hyun-Mi;Lee, Hwa-Woon;Lee, Soon-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.591-605
    • /
    • 2010
  • Recirculation of airmass in coastal region occurs because of the change from land to sea breeze and was shown to produce a contrary result on air quality. This study examines the numerical simulation to analyze the effect of recirculation flow in Gwangyang Bay, Korea. For this purpose two case studies are performed by the WRF-FLEXPART-CMAQ modeling system, each for a different Meso-Synoptic Index. Additionally this research make a comparative study of large domain (Domain L) and small domain (Domain S). The horizontal wind fields are simulated from WRF. Changes in the land-sea breeze have an effect on the particle dispersion modeling. The numerical simulation of air quality is carried out to investigate the recirculation of ozone. Ozone is transported to eastward under strong synoptic condition (Case_strong) because of westerly synoptic flow and this pattern can confirm in all domain. However ozone swept off by the land breeze and then transported to northward along sea breeze under conditions of clear sky and weak winds (Case_weak). In this case re-advected ozone isn't simulate in Domain S. The study found that recirculation of airmass must be concerned when numerical simulation of air quality is performed in coastal region, especially on a sunny day.