• Title/Summary/Keyword: CM

Search Result 34,812, Processing Time 0.048 seconds

Analysis of Respiratory Motional Effect on the Cone-beam CT Image (Cone-beam CT 영상 획득 시 호흡에 의한 영향 분석)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mi-Sun
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.81-86
    • /
    • 2007
  • The cone-beam CT (CBCT) which is acquired using on-board imager (OBI) attached to a linear accelerator is widely used for the image guided radiation therapy. In this study, the effect of respiratory motion on the quality of CBCT image was evaluated. A phantom system was constructed in order to simulate respiratory motion. One part of the system is composed of a moving plate and a motor driving component which can control the motional cycle and motional range. The other part is solid water phantom containing a small cubic phantom ($2{\times}2{\times}2cm^3$) surrounded by air which simulate a small tumor volume in the lung air cavity CBCT images of the phantom were acquired in 20 different cases and compared with the image in the static status. The 20 different cases are constituted with 4 different motional ranges (0.7 cm, 1.6 cm, 2.4 cm, 3.1 cm) and 5 different motional cycles (2, 3, 4, 5, 6 sec). The difference of CT number in the coronal image was evaluated as a deformation degree of image quality. The relative average pixel intensity values as a compared CT number of static CBCT image were 71.07% at 0.7 cm motional range, 48.88% at 1.6 cm motional range, 30.60% at 2.4 cm motional range, 17.38% at 3.1 cm motional range The tumor phantom sizes which were defined as the length with different CT number compared with air were increased as the increase of motional range (2.1 cm: no motion, 2.66 cm: 0.7 cm motion, 3.06 cm: 1.6 cm motion, 3.62 cm: 2.4 cm motion, 4.04 cm: 3.1 cm motion). This study shows that respiratory motion in the region of inhomogeneous structures can degrade the image quality of CBCT and it must be considered in the process of setup error correction using CBCT images.

  • PDF

Variation of Leaf Characters in Cultivating and Wild Soybean [Glycine max (L.) Merr.] Germplasm (콩 재배종과 야생종 유전자원의 엽 형질 변이)

  • Jong, Seung-Keun;Kim, Hong-Sig
    • Korean Journal of Breeding Science
    • /
    • v.41 no.1
    • /
    • pp.16-24
    • /
    • 2009
  • Although leaf characters are important in soybean [Glycin max (L.) Merr.] breeding and development of cultural methods, very little information has been reported. The objectives of this study were to evaluate and analyze the relationships among leaf characters and suggest possible classification criteria for cultivating and wild (Glycin soja Sieb. & Zucc.) soybeans. Total of 94 cultivating and 91 wild soybean accessions from the Soybean Germplasm Laboratory of Chungbuk National University were used for this study. Central leaflet of the second leaf from the top of the plant was selected to measure leaf characters. Average leaf length, leaf width, leaf area, leaf shape index (LSI) of cultivating and wild soybeans were 12.3$\pm$1.25 cm and 6.6$\pm$1.35 cm, 6.8$\pm$1.241 cm and 2.9$\pm$0.92 cm, 55.6$\pm$15.75 $cm^2$ and 14.3$\pm$7.83 $cm^2$, and 1.9$\pm$0.38 and 2.4$\pm$0.53, respectively. Based on LSI, three categories of leaf shape, i.e., oval, ovate and lanceolate, were defined as LIS$\leq$2.0, LSI 2.1~3.0 and 3.1$\leq$LSI, respectively. Percentage of oval, ovate and lanceolate leaf types among cultivating and wild soybean accessions were 78.7%, 17.0% and 4.3 %, and 40%, 15.4% and 4.4%, respectively. Based on leaf length, three categories for cultivating, i.e. short leaf ($\leq$11.0 cm), intermediate (11.1~13.0 cm), and long (13.1 cm$\leq$), and four categories, i.e. short ($\leq$5.0 cm), intermediate (5.1~7.0 cm), long (7.0~9.0 cm), and very long (9.1 cm$\leq$) for wild soybeans were defined. Short, intermediate and long leaf types were about 1/3, 1/2 and 1/6, respectively, in cultivating soybeans, and 15.4%, 40.7% and 39.5%, plus 4.4% of very long leaf type in wild soybean. Cultivating and wild soybeans had leaf thickness, leaf area ratio (LAR), angle and petiol length of 0.25$\pm$0.054 mm and 0.14$\pm$0.032 mm, 40.1$\pm$8.22 and 53.7$\pm$12.02, $37.6{\pm}5.89^{\circ}$ and $54.6{\pm}10.77^{\circ}$, and 23.9$\pm$5.89 cm and 5.9$\pm$2.33 cm, respectively. There were highly significant positive correlations between leaf length and leaf width, and negative correlation between LSI and leaf width both in cultivating and wild soybeans. Although leaf area showed significant correlations with leaf length, leaf width and LIS in cultivating soybeans, wild soybeans showed no significant relationships among these characters. In general, soybeans with oval, ovate and lanceolate leaves were significantly different in leaf width and thickness. Cultivating soybean with oval leaf had greater leaf area, while wild soybeans with oval or ovate leaf had longer petiol than with lanceolate leaf.

Effects of Soil Depth and Irrigation Period on Some of the Native Plants in and Artificial Substrate of Roof Garden (옥상녹화용 인공배합토에서 토심 및 관수주기에 따른 몇몇 자생식물의 생육특성)

  • Bang, Kwang-Ja;Ju, Jin-Hee;Kim, Sun-Hae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.75-83
    • /
    • 2004
  • Focusing on native plants that have high possibility of being introduced as rooftop material, this study was conducted to investigate extensive and easy-to-manage rooftop garden and to raise the utilization of native plants by verifying their growing response to artificial substrate soil depth and irrigation period. The study was conducted from March to September in 2002. Plants tested included Chrysanthemum zawadskii, Sedium middendorffianum, Thymus quinquecostatus, Allium senescens, and Dianthus superbus. Regarding soil depth, it was 5 cm and 10 cm. Irrigation period was non-irrigation, 1-week, 2-weeks, and 3- weeks, Its result is as follows; 1. In case of Sedum middendorffianum Maxim, mortality rate was 0% regardless of soil depth and irrigation period making it very suitable material for rooftop garden. 2. In case of Allium senescens L., mortality rate was 0% regardless of soil depth and irrigation period making it very suitable material for rooftop garden. Therefore, Provided that fertilizing is managed well, it is a plant that can be highly utilized.3. In case of Chrysanthemum zawadskii Herb. Subsp. (Nakai) Y. Lee Stat., the growth of top was lower in 10cm than in 5cm and it grew well in 10cm. When utilizing for rooftop garden, it would be desirable to keep minimum viable soil depth at over 10cm. If there is enough rainfall, soil and soil depth seem to have greater effect on growth than irrigation period does. 4. In case of Diauthus superbus L. var. longicalycinus (Maxim) Williams, rooting rate and growth were better in 10cm than in 5cm. Therefore, it is desirable to keep minimum soil depth at over 10cm. 5. In case of Thymus quinquecostatus Celak, the growth of top and flowering were better in 10cm than in 5cm. Therefore, it seems desirable to have minimum viable soil depth to be over 10cm. In conclusion, the most suitable species for rooftop garden are Sedium middendorffianum and Allium senescens in this experiment. However, Chrysanthemum zwadskii, Thymus quinquecostatus, and Dianthus chinensis also can be utilized greatly when irrigation is managed regularly in artificial mixed soil over 10cm.

Structure and Variation of Tidal Flat Temperature in Gomso Bay, West Coast of Korea (서해안 곰소만 갯벌 온도의 구조 및 변화)

  • Lee, Sang-Ho;Cho, Yang-Ki;You, Kwang-Woo;Kim, Young-Gon;Choi, Hyun-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.100-112
    • /
    • 2005
  • Soil temperature was measured from the surface to 40 cm depth at three stations with different heights in tidal flat of Gomso Bay, west coast of Korea, for one month in every season 2004 to examine the thermal structure and the variation. Mean temperature in surface layer was higher in summer and lower in winter than in lower layer, reflecting the seasonal variation of vertically propagating structure of temperature by heating and cooling from the tidal flat surface. Standard deviation of temperature decreased from the surface to lower layer. Periodic variations of solar radiation energy and tide mainly caused short term variation of soil temperature, which was also intermittently influenced by precipitation and wind. Time series analysis showed the power spectral energy peaks at the periods of 24, 12 and 8 hours, and the strongest peak appeared at 24 hour period. These peaks can be interpreted as temperature waves forced by variations of solar radiation, diurnal tide and interaction of both variations, respectively. EOF analysis showed that the first and the second modes resolved 96% of variation of vertical temperature structure. The first mode was interpreted as the heating antl cooling from tidal flat surface and the second mode as the effect of phase lag produced by temperature wave propagation in the soil. The phase of heat transfer by 24 hour period wave, analyzed by cross spectrum, showed that mean phase difference of the temperature wave increased almost linearly with the soil depth. The time lags by the phase difference from surface to 10, 20 and 40cm were 3.2,6.5 and 9.8 hours, respectively. Vertical thermal diffusivity of temperature wave of 24 hour period was estimated using one dimensional thermal diffusion model. Average diffusivity over the soil depths and seasons resulted in $0.70{\times}10^{-6}m^2/s$ at the middle station and $0.57{\times}10^{-6}m^2/s$ at the lowest station. The depth-averaged diffusivity was large in spring and small in summer and the seasonal mean diffusivity vertically increased from 2 cm to 10 cm and decreased from 10 cm to 40 cm. Thermal propagation speeds were estimated by $8.75{\times}10^{-4}cm/s,\;3.8{\times}10{-4}cm/s,\;and\;1.7{\times}10^{-4}cm/s$ from 2 cm to 10 cm, 20 cm and 40 cm, respectively, indicating the speed reduction with depth increasing from the surface.

Reduction of Electron Contamination Using a Filter for 6MV Photon Beam (6MV 광자선에서 전자오염 감소에 관한 연구)

  • Lee, Choul-Soo;Yoo, Myung-Jin;Yum, Ha-Yong
    • Radiation Oncology Journal
    • /
    • v.15 no.2
    • /
    • pp.159-165
    • /
    • 1997
  • Purpose : Secondary electrons generated by interaction between Primary X-rar beam and block tray in megavoltage irradiation, result in excess soft radiation dose to the surface layer To reduce the surface dose from the electron contamination, electron filters were attached under the tray when a customized block was used. Materials and Methods : Cu, Al or Cu/Al combined Plate with different thickness was used as a filter and the surface dose reduction was measured for each case. The measurement to find optimal filter was performed with $10m\times10cm$ field size and 78.5cm source to surface distance. The measurement points are positioned with 2mm intervals from surface to maximum build-up point. To acquire the effect of field size dependence on optimal electron filter, the measurement was performed from $4cm\times4cm\;to\;25cm\times25cm$ field sizes. Results : The surface dose was slowly increased by increasing irradiation field but rapidly increased beyond $15cm\times15cm$ field size. Al plate was found to be inadequate filter because of the failure to have surface dose kept lowering than the dose of deep area. Cu 0.5mm plate and Cu/Al=0.28mm/1.5mm combined plate were found to be optimal filters. By using these 2 filters, the absorbed dose to the surface layer was effectively reduced by $5.5\%,\;11.3\%,\;and\;22.3\%$ for the field size $4cm\times4cm,\;10m\times10cm,\;and\;25cm\times25cm$, respectively. Conclusion : The surface dose attributable to electron contamination had a dependence on field size. The electron contamination was increased when tray was used. Specially the electron contamination in the surface layer was greater when the larger field was used. 0.5mm Cu Plate and Cu/Al=0.28mm/15mm combined plates were selected as optimal electron filters. When the optimal electron filter was attached under the tray, excessive surface dose was decreased effectively The effect of these electron filters was better when a larger field was used.

  • PDF

Dose Characteristics of Total-Skin Electron-Beam Irradiation with Six-Dual Electron Fields (Six-Dual 전자선 조사면에 의한 전신 피부 조사의 선량 특성)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.337-345
    • /
    • 1998
  • Purpose : To obtain the uniform dose at limited depth to entire surface of the body, the dose characteristics of degraded electron beam of the large target-skin distance and the dose distribution of the six-dual electron fields were investigated Materials and Method : The experimental dose distributions included the depth dose curve, spatial dose and attenuated electron beam were determined with 300 cm of target-skin distance (TSD) and full collimator size (35*35 $cm^2$ on TSD 100 cm) in 4 MeV electron beam energy. Actual collimated field size of 105 cm * 105 cm at the distance of 300 cm could include entire hemibody. A patient was standing on step board with hands up and holding the pole to stabilize his/her positions for the six-dual fields technique. As a scatter-degrader, 0.5 cm of acrylic plate was inserted at 20 cm from the body surface on the electron beam path to induce ray scattering and to increase the skin dose. Results : The full width at half maximum(FWHM) of dose profile was 130 cm in large field of 105*105 $cm^2$ The width of $100\pm10\%$ of the resultant dose from two adjacent fields which were separated at 25 cm from field edge for obtaining the dose unifomity was extended to 186 cm. The depth of maximum dose lies at 5 mm and the 80$\%$ depth dose lies between 7 and 8 mm for the degraded electron beam by using the 0.5 cm thickness of acrylic absorber. Total skin electron beam irradiation (TSEBI) was carried out using the six dual fields has been developed at Stanford University. The dose distribution in TSEBI showed relatively uniform around the flat region of skin except the protruding and deeply curvatured portion of the body, which showed excess of dose at the former and less dose at the latter. Conclusion : The percent depth dose, profile curves and superimposed dose distribution were investigated using the degraded electron beam through the beam absorber. The dose distribution obtained by experiments of TSEBI showed within$\pm10\%$ difference except the protruding area of skin which needs a shield and deeply curvatured region of skin which needs boosting dose.

  • PDF

Time Course Variation of Vitamin $C_3$ Content in Leg Skin of Broiler Chicks Exposed to Different Dose of UVB Light (자외선의 상이한 선양을 조사한 브로일러 병아리의 다리 피부중 비타민 $C_3$ 함양의 경시적 변화)

  • 장윤환;김강수;여영수;강훈석;조인호;배은경
    • Korean Journal of Poultry Science
    • /
    • v.20 no.2
    • /
    • pp.93-105
    • /
    • 1993
  • This study was carried out to determine the concentrations of previtamin D$_3$(PreD$_3$), lumisterol$_3$(L3), tachystero1$_3$(73), vitamin D$_3$(VD$_3$) and provitamin D$_3$(ProD$_3$) in leg skins of broiler chicks exposed to UVB lights (maximum intensity at 297 nm) with dose of 0.204 or 0.409 mJ/$\textrm{cm}^2$(30 or 60 min irradiation) . The broiler Hubbard line day old chicks(2 dose $\times$9 elapsed time $\times$4 replica+10 control=82) were fed VD-deficient diet for 31 days in a windowless subdued light room. The skin was collected at 0, 6, 12, 18, 30, 42, 66, 90 or 138 hr after UVB irradiation. The skin lipid was extracted by 9% ethyl acetate/n-hexane, and the fraction of VD$_3$ and its analogues was purified by Sep-Pak silica cartridge. The straight phase HPLC was utilized to analyze ProD$_3$ and its products. The mole %(absolute level expressed in ng/$\textrm{cm}^2$) of PreD$_3$ in leg skin (epidermis+dermis) was 4.67%(44 ng/$\textrm{cm}^2$) or 3.97%(37 ng/$\textrm{cm}^2$) right after UVB irradiation by 0.204 or 0.409 mJ/$\textrm{cm}^2$(30 or 60 min) at 15 cm distance, respectively. It content in leg skin at 0 hr after exposure was 7.24%(12 ng/$\textrm{cm}^2$) or 0.92%(9 ng/$\textrm{cm}^2$), respectively. The increase in irradiation dose did not affect proportionally the If synthesis.73 concentration in leg skin was 0.58%(S ng/$\textrm{cm}^2$) or 0.57%(6 ng/$\textrm{cm}^2$), respectively 0 hr after irradiation. The VD$_3$ in leg skin of birds exposed to UVB light with dose of 0.204 or 0.409 mJ/$\textrm{cm}^2$ was 2.13% (21 ng/$\textrm{cm}^2$) or 0.97% (16ng/$\textrm{cm}^2$), respectively at 0 hr after exposure, 2.72%(26ng/$\textrm{cm}^2$) or 3.84%(37ng/$\textrm{cm}^2$), respectively at 6 hr, and 4.30% ((33ng/$\textrm{cm}^2$) or 6.40%(76ng/$\textrm{cm}^2$), respectively at 12 hr. The peak concentration of VD$_3$ was presented at 18 or 30 hr when 0.204 or 0.409 mJ/$\textrm{cm}^2$) was treated, respectively. It was shown that 18~30 hr were necessary for the thermal conversion of PreD$_3$ into VD$_3$ in the leg skin of broiler chicks. The ProD$_3$ contents in leg skins of negative control, 0.204 mJ/$\textrm{cm}^2$ and 0.409 mJ/$\textrm{cm}^2$ treated birds were 966, 948 and 815 ng/$\textrm{cm}^2$, respectively at right before and after UVB exposure. It was estimated that 18 or 151 ng/$\textrm{cm}^2$ of ProD$_3$ was isomerized to PreD$_3$, L$_3$, T$_3$ and VD$_3$ when exposed to 0.204 or 0.409 mJ/$\textrm{cm}^2$, respective)y. Consequently it was shown that when double dose of UVB light was applied to irradiate the chick body, more but not double synthesis of VD$_3$ and its analogues was occured in leg skin of brolier chicks.

  • PDF

The Effects of Subsoiling at Different Depths and Spacings on Physical Properties of Soil and Rice Yields (심토파쇄(深土破碎) 깊이와 간격(間隔)이 토양(土壤)의 물리성(物理性)과 수도수량(水稻收量)에 미치는 영향(影響))

  • Min, Kyeong-Beom;Kim, Jai-Jong;Cho, Seong-Jin;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.3
    • /
    • pp.228-234
    • /
    • 1983
  • The effects of subsoiling on improving soil physical properties for increasing yield of rice were studied at different depths and spacings in a clay loam paddy soils. The results are summarized as follows : 1. Working efficiencies of subsoiling at depth 50cm were lower than those at depth 30cm by tractor, while subsoiling ratios at depth 50cm were higher than those at depth 30cm. 2. During cultivation period, water requirement in 50cm depth subsoiling was higher than that in 30cm depth subsoiling. Water requirement in the central part was more rapid about 1.0-2.0mm/day than in the middle between two neighbouring central points. 3. Soil physical properties such as hardness, bulk density and porosity were significantly improved by subsoiling and the subsoiling effects have been continued until the second year. Negative correlations between yield and bulk density or hardness of subsoil were observed. 4. A lograrithmic function was observed between rice yield ($\hat{Y}$) and subsoiling ratio(X) at depth of 20cm. The optimum space for subsoiling in 30 and 50cm depth. was 80 and 120cm, respectively.

  • PDF

Deformation Behavior of Locally Stiffness-variant Stretchable Substrates Consisting of the Island Structure (섬(Island) 구조로 이루어진 강성도 국부변환 신축성 기판의 변형 거동)

  • Oh, Hyun-Ah;Park, Donghyeun;Shin, Soo Jin;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.117-123
    • /
    • 2015
  • In order to develop stretchable substrate technology for stretchable devices, locally stiffness-variant stretchable substrates were processed with two polydimethylsiloxane elastomers of different stiffnesses and their deformation behavior was characterized. Low-stiffness substrate matrix and embedded high-stiffness island of the stretchable substrate were formed by using Dragon Skin 10 of the elastic modulus of 0.09 MPa and Sylgard 184 of the elastic modulus of 2.15 MPa, respectively. A stretchable substrate was fabricated to a configuration of 6.5 cm length, 0.4 cm thickness, and 2.5 cm width. The elastic modulus of a stretchable substrate was increased from 0.09 MPa to 0.13~0.33 MPa by embedding a Sylgard 184 island of 1 cm width and 1~6 cm length into the center part of the Dragon Skin 10 substrate matrix. The elastic modulus of a stretchable substrate was improved to 0.16~0.2 MPa by embedding a Sylgard 184 island of 4 cm length and 0.5~1.5 cm width and to 0.1421~0.154 MPa by embedding a Sylgard 184 island of 2 cm length and 0.5~1.5 cm width. With increasing the tensile strain of a stretchable substrate, deformation restriction of the locally stiffness-variant Sylgard 184 island was further enhanced due to substantial increase in the strength difference between Sylgard 184 and Dragon 10 at large strain.

Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications (신축성 전자패키징용 강성도 국부변환 polydimethylsiloxane 기판의 탄성계수)

  • Oh, Hyun-Ah;Park, Donghyeun;Han, Kee-Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.91-98
    • /
    • 2015
  • In order to apply to stretchable electronics packaging, locally stiffness-variant stretchable substrates consisting of island structure were fabricated by combining two polydimethylsiloxane elastomers of different stiffnesses and their elastic moduli were characterized as a function of the width of the high-stiffness island. The low-stiffness substrate matrix and the embedded high-stiffness island of the stretchable substrate were formed by using Dragon Skin 10 of the elastic modulus of 0.09 MPa and Sylgard 184 of the elastic modulus of 2.15 MPa, respectively. A stretchable substrate was fabricated to be a configuration of 6.5-cm length, 0.4-cm thickness, and 2.5-cm width, in which a high-stiffness Sylgard 184 island, of 4-cm length, 0.2-cm thickness, and 0.5~1.5-cm width, was embedded. The elastic modulus of a stretchable substrate was increased from 0.09 MPa to 0.16 MPa by incorporating the Sylgard 184 island of 0.5-cm width to Dragon Skin 10 substrate matrix. The elastic modulus was further improved to 0.18 MPa and 0.2 MPa with increasing the Sylgard 184 island width to 1.0 cm and 1.5 cm, which were in good agreement with values estimated by combining the Voigt structure of isostrain and the Reuss structure of isostress.