• Title/Summary/Keyword: CLA-TG

Search Result 13, Processing Time 0.014 seconds

The Effects of Conjugated Linoleic Acid and/or Exercise on Body Weight and Body Composition in College Women with High Body Fat Mass (Conjugated linoleic acid의 섭취와 운동여부가 체지방 함량이 높은 여대생의 체중과 체성분 변화에 미치는 영향)

  • Son, Say-Jin;Lee, Ji-Eun;Park, Eun-Kyo;Paik, Eun-Young;Lee, Ji-Eun;Kim, Young-Jae;Kim, Tae-Wook;Kim, Dae-Han;Kim, Jong-Hyuck;Jung, In-Kyung;Kim, Jung-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.307-312
    • /
    • 2009
  • To investigate the effects of conjugated linoleic acid (CLA) and/or exercise on body fat mass and weight, college women of normal weight (2130%) were recruited for this study. The participants were divided into 4 groups: placebo-no exercise, placebo-exercise, CLA-no exercise, and CLA-exercise groups. Three grams of either a placebo (corn oil) or CLA were taken every day for 12 weeks, and the exercise groups performed 80 minutes of aerobic and anaerobic exercise three times a week for 12 weeks. There were no differences in nutrient intakes among the groups. The CLA-exercise group had significantly lower body weight, BMI and body fat mass compared to the placebo-no exercise group. In addition, the HDL-cholesterol levels of subjects in the CLA-no exercise and CLA-exercise groups significantly increased compared to those in the placebo-no exercise group. These results suggest that a combination of CLA supplementation with exercise could efficiently reduce body fat mass and body weight compared to CLA supplementation or exercise alone.

Supplementation Effects of $C_{18:2}$ or $C_{18:3}$ Rich-oils on Formations of CLA and TVA, and Lipogenesis in Adipose Tissues of Sheep

  • Choi, S.H.;Lim, K.W.;Lee, H.G.;Kim, Y.J.;Song, Man K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1417-1423
    • /
    • 2007
  • The present study was conducted to investigate the supplementation effects of $C_{18:2}$ rich-soybean oil or $C_{18:3}$ rich-perilla oil (7% of total diet, DM basis) for 12 weeks on plasma metabolites, fatty acid profile, in vitro lipogenesis, and activities of LPL and FAS in adipose tissue of sheep. The treatments were basal diet (Control), $C_{18:2}$ rich-soybean oil supplemented diet (SO-D) and $C_{18:3}$ rich-perilla oil supplemented diet (PO-D). All the sheep were fed the diets consisting of roughage to concentrate in the ratio of 40:60 (DM basis). Oil supplemented diets (SO-D and PO-D) slightly increased contents of triglyceride (TG) and total cholesterol (TC), proportions of both cis-9 trans-11 and trans-10 cis-12 CLA and TVA, but lowered (p<0.01) those of $C_{18:0}$ compared to the control diet. No differences were observed in the contents of TG and TC and proportions of fatty acids in plasma between supplemented oils. Oil supplemented diets slightly increased the proportions of cis-9 trans-11 and trans-10 cis-12 types of CLA in subcutaneous adipose tissue of sheep compared to the control diet. The rate of lipogenesis with acetate was higher (p<0.01) for intermuscular- and subcutaneous adipose tissues than that for intramuscular adipose tissue, while that with glucose did not differ among fat locations in sheep fed SO-D. No differences were observed in the rate of lipogenesis between substrates in all fat locations. The rates of lipogenesis with glucose increased only in the intermuscular- (p<0.01) and subcutaneous adipose tissue (p<0.005) compared to those with acetate. The rates of lipogenesis with acetate were the highest in the intermuscular and intramuscular adipose tissue of the sheep fed PO-D. Oil supplemented diets slightly increased the rate of lipogenesis with glucose for all fat locations. Supplementation of oils to the diet numerically increased the fatty acid synthase activity but did not affect the lipoprotein lipase activity in subcutaneous adipose tissue.

Milk Conjugated Linoleic Acid (CLA) Profile and Metabolic Responses of Dairy Cows Fed with High-temperature-micro-time (HTMT) Treated Diets Containing High Quantity Extruded Soybean (ESB)

  • Lee, H.G.;Hong, Z.S.;Wang, J.H.;Xu, C.X.;Jin, Y.C.;Kim, T.K.;Kim, Y.J.;Song, M.K.;Choi, Yun.-Jaei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1504-1512
    • /
    • 2009
  • A feeding trial was conducted to examine the effect of high-temperature-micro-time (HTMT) processing of diets containing extruded soybean (ESB) in high quantity on milk fat production, metabolic responses, and the formation of conjugated linoleic acid (CLA) and trans-vaccenic acid (TVA). Twenty-one multiparous Holstein cows in mid-lactation were blocked according to milk yield in the previous lactation. Cows within each block were randomly assigned to either normal concentrate or HTMT treated diets containing ESB (7.5% HTMT-ESB and 15% HTMT-ESB). It was hypothesized that the HTMT-ESB would affect the undegradable fatty acids in the rumen and, thus, would modify the fatty acid profile of milk fat. Both 7.5% and 15% HTMT-ESB did not affect milk yield, fat, protein, lactose and solid-not-fat (SNF), but the proportion of cis-9, trans-11 CLA in milk fat was significantly increased by these treatments. Content of TVA in milk fat was not affected by HTMT-ESB. The HTMT-ESB influenced the fatty acid profile in milk fat, but there was little difference between 7.5% and 15% of supplementation. HTMT-ESB feeding significantly decreased the concentration of plasma insulin and glucose, while plasma growth hormone (GH), triglyceride (TG), non-esterified fatty acid (NEFA) and HDLcholesterol were increased by 7.5% and 15% ESB-HTMT supplementation in comparison to the control group (p<0.05). However, no significant difference was observed in plasma LDL-cholesterol, insulin like growth factor (IGF)-1, T3, T4, and leptin concentrations among treatments (p>0.05). The present results showed that cis-9, trans-11 CLA production was increased by HTMT treatment of dietary ESB without reduction of milk fat, and the unchanged milk fat and yield was assumed to be associated with the constant level of thyroid hormones, leptin, and IGF-1.