• 제목/요약/키워드: CIGS thin film

검색결과 164건 처리시간 0.033초

Ultra Broadband Absorption of SPPs Enhanced Dual Grating Thin Film CIGS Solar Cell Enabled by Particle Swarm Optimization

  • Le, DuyKhanh;Tran, QuyetThang;Lee, Sangjun;Kim, Sangin
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.429-435
    • /
    • 2014
  • We examined the effective utilization of Particle Swarm Optimization (PSO) to enhance the light absorption performance in thin CuIn1-xGaxSe2 (CIGS) solar cells with dual (top and bottom) gratings. The PSO tuned structure was demonstrated to be capable of achieving high and ultra broadband absorption spectra due to well-spaced and well-defined absorption peaks, which were SPPs and photonic modes induced by the metal and dielectric gratings. For only TM polarization and both polarizations, the fully optimized net absorptions exhibit 85.6% and 78.1%, which correspond to ~35.4% and ~23.5% improvement compared to optimized flat structures, respectively.

Ga 함유량에 따른 Co-evaporation 방법에 의해 제조된 Cu(In1-x,Gax)Se2 박막 태양전지의 구조 및 전기적 특성 (Structural and Electrical Properties of Co-evaporated Cu(In1-x,Gax)Se2 Thin Film Solar Cells with Varied Ga Content)

  • 임종엽;이용구;박종범;김민영;양계준;임동건
    • 한국전기전자재료학회논문지
    • /
    • 제24권9호
    • /
    • pp.755-759
    • /
    • 2011
  • $Cu(In_{1-x},Ga_x)Se_2$ thin films have been considered as an effective absorber material for high efficient solar cells. In this paper, the CIGS thin films with varied Ga content were prepared using a co-evaporation process of three stage. We carry out structure and electrical optical property on the thin film in varied Ga content. CIGS thin films have been characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), four-point probe measurement, and the Hall measurement. To optimize Ga contents, Ga/(In+Ga) ratio were changed from 0.13 to 0.72. At this time the carrier concentrations were varied from $1.22{\times}10^{11}\;cm^{-3}$ to $5.07{\times}10^{16}\;cm^{-3}$, and electrical resistivity were varied from $1.11{\times}10^0\;{\Omega}-cm$ to $1.08{\times}10^2\;{\Omega}-cm$. A strong <220/204> orientation and a lager grain size were obtained at a Ga/(In+Ga) of 0.3. We were able to achieve conversion efficiency as high as 15.95% with a Ga/(In+Ga) of 0.3.

전해증착 Cu(In,Ga)Se2 박막의 Se가스 분위기 열처리 (Annealing of Electrodeposited Cu(In,Ga)Se2 Thin Films Under Se Gas Atmosphere)

  • 신수정;김명한
    • 한국재료학회지
    • /
    • 제21권8호
    • /
    • pp.461-467
    • /
    • 2011
  • Cu(In, Ga)$Se_2$ (CIGS) precursor films were electrodeposited on Mo/glass substrates in acidic solutions containing $Cu^{2+}$, $In^{3+}$, $Ga^{3+}$, and $Se^{4+}$ ions at -0.6 V (SCE) and pH. 1.8. In order to induce recrystallization, the electrodeposited $Cu_{1.00}In_{0.81}Ga_{0.09}Se_{2.08}$ (25.0 at.% Cu + 20.2 at.% In + 2.2 at.% Ga + 52.0 at.% Se) precursor films were annealed under a high Se gas atmosphere for 15, 30, 45, and 60 min, respectively, at $500^{\circ}C$. The Se amount in the film increased from 52 at.% to 62 at.%, whereas the In amount in the film decreased from 20.8 at.% to 9.1 at.% as the annealing time increased from 0 (asdeposited state) to 60 min. These results were attributed to the Se introduced from the furnace atmosphere and reacted with the In present in the precursor films, resulting in the formation of the volatile $In_2Se$. CIGS precursor grains with a cauliflower shape grew as larger grains with the $CuSe_2$ and/or $Cu_{2-x}Se$ faceted phases as the annealing times increased. These faceted phases resulted in rough surface morphologies of the CIGS films. Furthermore, the CIGS layers were not dense because the empty spaces between the grains were not removed via annealing. Uniform thicknesses of the $MoSe_2$ layers occurred at the 45 and 60 min annealing time. This implies that there was a stable reaction between the Mo back electrode and the Se diffused through the CIGS film. The results obtained in the present research were sufficiently different from comparable studies where the recrystallization annealing was performed under an atmosphere of Ar gas only or a low Se gas pressure.

Fabrication and Characteristics of C(IG)(SeS)2 Absorbers by Selenization and Sulfurization

  • Son, Young-Ho;Jung, Myoung-Hyo;Choi, Seung-Hoon;Choi, Jung-Kyu;Kim, Jin-Ha;Lee, Dong-Min;Park, Joong-Jin;Lee, Jang-Hee;Jung, Eui-Chun;Kim, Jung-Hun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.361-361
    • /
    • 2011
  • Cu(InGa)(SeS2) (CIGS) thin film solar cells have recently reached an efficiency of 20%. Recent studies suggest a double graded band gap structure of the CIGS absorber layer to be a key issue in the production of high efficiency thin film solar cell using by sputtering process method. In this study, Cu(InGa)(SeS2) absorbers were manufactured by selenization and surfulization, we have deposited CIG precusor by sputtering and Se layer by evaporation before selenization. The objective of this study is to find out surfulization effects to improve Voc and to compare with non-surfulization Cu(InGa)Se2 absorbers. Even if we didn't analysis Ga depth profile of Cu(InGa)(SeS2) absorbers, we confirmed increasing of Eg and Voc through surlization process. In non-surfulization Cu(InGa)Se2 absorbers, Eg and Voc are 0.96eV and 0.48V. Whereas Eg and Voc of Cu(InGa)(SeS2) absorbers are 1.16eV and 0.57V. And the efficiency of 9.58% was achieved on 0.57cm2 sized SLG substrate. In this study, we will be discussed to improve Eg and Voc through surfulization and the other method without H2S. gas.

  • PDF

Cu(InGa)$Se_2$ 광흡수막의 두께에 따른 태양전지의 전기광학 특성 (Electrical and Optical Properties with the Thickness of Cu(lnGa)$Se_2$ Absorber Layer)

  • 김석기;이정철;강기환;윤경훈;박이준;송진수;한상옥
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.108-111
    • /
    • 2002
  • CIGS film has been fabricated on soda-lime glass, which is coated with Mo film. by multi-source evaporation process. The films has been prepared with thickness of 1.0 ${\mu}m$, 1.75${\mu}m$, 2.0${\mu}m$, 2.3${\mu}m$, and 3.0${\mu}m$. X-ray diffraction analysis with film thickness shows that CIGS films exhibit a strong (112) preferred orientation. Furthermore. CIGS films exhibited distinctly decreasing the full width of half-maximum and (112) preferred peak with film thickness. Also, The film's microstructure, such as the preferred orientation, the full width at half-maximum(FWHM), and the interplanar spacing were examined by X-ray diffraction. The preparation condition and the characteristics of the unit layers were as followings ; Mo back contact DC sputter, CIGS absorber layer : three-stage coevaporation, CdS buffer layer : chemical bath deposition, ZnO window layer : RF sputtering, $MgF_2$ antireflectance : E-gun evaporation

  • PDF

CIS 태양전지용 이원 화합물 $Cu_xSe$ 나노입자를 이용한 $Cu_xSe$ 박막 제조 (Fabrication of $Cu_xSe$ thin films by selenization of $Cu_xSe$ nanoparticles prepared by a colloidal process)

  • 김균환;안세진;윤재호;곽지혜;김도진;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.96-98
    • /
    • 2009
  • This report summarizes our recent efforts to produce large-grained CIGS materials from porous nanoparticle thin films. In our approach, a $Cu_xSe$ nanoparticle colloid were first prepared by reacting a mixture of CuI in pyridine with $Na_2Se$ in methanol at reduced temperature. purified colloid was sprayed onto heated molybdenum-coated sodalime glass substrates to form thin film. After thermal processing of the thin film under a selenium ambient. $Cu_xSe$ colloid and thin film were characterized by scanning electron microscopy, x-ray diffraction. The optical(direct) band gap energy of $Cu_xSe$ thin films is 1.5 eV.

  • PDF

Characterization of Chemically Deposited CdS Buffer Layer for High Efficiency CIGS Solar Cells

  • Kim, Donguk;Lee, Sooho;Lee, Jaehyeong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.459.2-459.2
    • /
    • 2014
  • CdTe계와 CGIS계 태양전지의 광투과층으로 CdS 박막이 많이 사용된다. Cds 박막의 필요한 물성으로는 높은 광투과도와 얇은 두께이다. 광투과층으로 사용되는 CdS 막의 광투과도가 높아야 많은 양의 빛이 손실 없이 투과하여 광흡수층인 CIGS에 도달할 수 있다. 특히, CdS막의 두께가 얇으면 밴드 갭 이상의 에너지를 가지는 파장의 빛도 투과시킬 수 있어 태양전지의 효율의 증가을 얻을 수가 있다. 그러나 CdS 막의 두께가 얇을 경우, pinhole이 생성되는 등 막의 균질성이 문제가 된다. 본 연구에서는 높은 변환 효율을 갖는 CIGS 박막 태양전지 제작에 적합한 chemical bath depostion(츙)법을 이용하여 CdS 박막을 제조하였다. 또한 반응시간, Cd 및 S source 비와 같은 증착 조건에 따른 박막의 특성을 조사하였다.

  • PDF

Cu(InGa)$Se_2$ 박막의 Cu/(In+Ga) 조성비에 따른 전기적 물성특성 (Physical Properties with Cu/(In+Ga) Ratios of Cu(InGa)$Se_2$ Films)

  • 김석기;이정철;강기환;윤경훈;송진수;박이준;한상옥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1584-1586
    • /
    • 2002
  • CuIn$Se_2$ (CIS) and related compounds such as Cu($In_xGa_{1-x})Se_2$(CIGS) have been studied by their potential for use in photovoltaic devices. CIS thin film materials which have high absorption coefficient and wide bandgap, have attracted much attention as an alternative to crystalline and amorphous silicon solar cells currently in use. Cu-rich CIGS film have very low resistivity, due to coexistence of the semimetallic $Cu_{2-x}Se$. In-rich CIGS films show high resistivity, since these films are compensated films without the $Cu_{2-x}Se$ phase. Optical properties of the CIGS films also change in accordance with the resistivity for the Cu/(In+Ga) ratio. The Cu-rich films have different spectra from In-rich films in near infrared wavelengths.

  • PDF