• 제목/요약/키워드: CIGS thin film

검색결과 164건 처리시간 0.026초

CIGS 태양전지 버퍼층으로의 활용을 위한 인듐설파이드의 전기화학적 합성 (Electrochemical Preparation of Indidum Sulfide Thin Film as a Buffer Layer of CIGS Solar Cell)

  • 김현진;김규원
    • 전기화학회지
    • /
    • 제14권4호
    • /
    • pp.225-230
    • /
    • 2011
  • Copper indium gallium selenide (CIGS) 기반 박막 태양전지는 저렴한 제작 단가 및 다른 박막 태양전지에 비해 높은 효율을 보여 실리콘 기반 태양전지의 차세대 태양전지로 각광을 받고 있다. 구성 요소 중 buffer 층은 window 층과 absorber 층 사이의 높은 밴드 갭(band gap)을 해소 해주는 역할을 한다. 기존의 cadmium sulfide(CdS)의 인체 유해성 때문에 이를 대신할 indium sulfide(In2S3)를 이용한 buffer 층의 연구가 활발히 진행되고 있다. 본 연구에서는 전기화학적인 방법을 통해 값싸고 간편하게 indium sulfide buffer 층을 전극 표면에 합성하는 연구를 진행하였다. Indium-Tin-Oxide(ITO) 전극표면을 sodium thiosulfate 및 indium sulfate의 혼합물 용액에 담그고 환원 전위를 인가하여 indium sulfide를 합성하였다. 크기가 다른 두 전압을 교대로 인가하여 확산 한계(diffusion limit)를 최소화 함으로써 표면에 균일한 조성을 가지는 buffer 층을 합성해 낼 수 있었다. 또한 합성 중 온도의 조절을 통해 buffer 층의 밴드 갭을 최적화 할 수 있었다. 이렇게 전기화학적으로 합성된 buffer 층은 X-선 광전자 분광법과 회절법의 분석을 통해 ${\beta}$-indium sulfide 결정구조를 가짐을 확인 하였다.

고효율 CIGS 박막 태양전지 개발 (Development of High Efficiency CIGS Thin Film Solar Cells)

  • 윤재호;송진섭;김기환;김민식;안병태;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.149-151
    • /
    • 2006
  • Cu계 $I-III-VI_2$화합물은 직접천이형 반도체로 광흡수계수가 매우 높아 박막형 태양전지 제조에 매우 유리하다. 또한 화학적으로 안정하며 Ga, Al 등을 첨가하면 에너지 금지대폭을 조절할 수 있어 Wide Bandgap 태양전지 및 탠덤구조 태양전지를 제조하기에도 용이하다 $CulnSe_2(CIS)$ 물질에서 In을 20-30% 정도 치환한 $Cu(In,Ga)Se_2(CIGS)$ 태양전지의 경우 19.5%의 세계 최고 효율을 보고하고 있으며 이는 다결정 실리콘 태양전지의 효율과 비슷한 수준이다. 본 연구에서는 동시 진공증발법을 이용하여 증착한 CIGS 박막을 이용하여 태양전지를 제조하였다. 공정의 재현성 및 결정립계가 큰 광흡수층 제조를 위하여 실시간 기판온도 모니터링 시스템을 도입하였으며 버퍼충으로는 용액성장한 CdS 박막을 사용하였다. SLG/MO/CIGS(CGS)/CdS/ZnO/Al 구조의 태양전지를 제조하여 면적 $0.5cm^2$에서 각각 17.5%의 효율을 얻었다.

  • PDF

고온 및 고온고습 환경 내에서 ZnO:Al 투명전극의 열화가 CIGS 박막형 태양전지의 성능 저하에 미치는 영향 (Effect of Degraded Al-doped ZnO Thin Films on Performance Deterioration of CIGS Solar Cell)

  • 김도완;이동원;이희수;김승태;박지홍;김용남
    • 한국세라믹학회지
    • /
    • 제48권4호
    • /
    • pp.328-333
    • /
    • 2011
  • The influence of Al-doped ZnO (AZO) thin films degraded under high temperature and damp heat on the performance deterioration of Cu(In,Ga)$Se_2$ (CIGS) solar cells was investigated. CIGS solar cells with AZO/CdS/CIGS/Mo structure were prepared on glass substrate and exposed to high temperature ($85^{\circ}C$) and damp heat ($85^{\circ}C$/85% RH) for 1000 h. As-prepared CIGS solar cells had 64.91% in fill factor (FF) and 12.04% in conversion efficiency. After exposed to high temperature, CIGS solar cell had 59.14% in FF and 9.78% in efficiency, while after exposed to damp heat, it had 54.00% in FF and 8.78% in efficiency. AZO thin films in the deteriorated CIGS solar cells showed increases in resistivity up to 3.1 times and 4.4 times compared to their initial resistivity after 1000 h of high temperature and damp heat exposure, respectively. These results can be explained by the decreases in carrier concentration and mobility due to diffusion or adsorption of oxygen and moisture in AZO thin films. It can be inferred that decreases in FF and conversion efficiency were caused by an increase in series resistance, which resulted from an increase in resistivity of AZO thin films degraded under high temperature and damp heat.

In과 Ga가 미포함 된 Kesterite Cu2ZnSn(S1-x,Sex)4 (CZTSS) 박막형 태양전지 개발 현황 (Development of Kesterite Cu2ZnSn(S1-x,Sex)4 (CZTSS)-Based Thin Film Solar Cells with In and Ga Free Absorber Materials)

  • 신승욱;한준희;강명길;윤재호;이정용;김진혁
    • 한국재료학회지
    • /
    • 제22권5호
    • /
    • pp.259-273
    • /
    • 2012
  • Chalcogenide-based semiconductors, such as $CuInSe_2$, $CuGaSe_2$, Cu(In,Ga)$Se_2$ (CIGS), and CdTe have attracted considerable interest as efficient materials in thin film solar cells (TFSCs). Currently, CIGS and CdTe TFSCs have demonstrated the highest power conversion efficiency (PCE) of over 11% in module production. However, commercialized CIGS and CdTe TFSCs have some limitations due to the scarcity of In, Ga, and Te and the environmental issues associated with Cd and Se. Recently, kesterite CZTS, which is one of the In- and Ga- free absorber materials, has been attracted considerable attention as a new candidate for use as an absorber material in thin film solar cells. The CZTS-based absorber material has outstanding characteristics such as band gap energy of 1.0 eV to 1.5 eV, high absorption coefficient on the order of $10^4cm^{-1}$, and high theoretical conversion efficiency of 32.2% in thin film solar cells. Despite these promising characteristics, research into CZTS-based thin film solar cells is still incomprehensive and related reports are quite few compared to those for CIGS thin film solar cells, which show high efficiency of over 20%. The recent development of kesterite-based CZTS thin film solar cells is summarized in this work. The new challenges for enhanced performance in CZTS thin films are examined and prospective issues are addressed as well.

성장온도에 따른 Cu(In1Ga)Se2박막 태양전지의 광전특성 분석 (Photovoltaic Properties of Cu(In1Ga)Se2Thin film Solar Cells Depending on Growth Temperature)

  • 김석기;이정철;강기환;윤경훈;송진수;박이준;한상옥
    • 한국전기전자재료학회논문지
    • /
    • 제16권2호
    • /
    • pp.102-107
    • /
    • 2003
  • This study puts focus on the optimization of growth temperature of CIGS absorber layer which affects severely the performance of solar cells. The CIGS absorber layers were prepared by three-stage co-evaporation of metal elements in the order of In-Ga-Se. The effect of the growth temperature of 1st stage was found not to be so important, and 350$^{\circ}C$ to be the lowest optimum temperature. In the case of growth temperature at 2nd/3rd stage, the optimum temperature was revealed to be 550$^{\circ}C$. The XRD results of CIGS films showed a strong (112) preferred orientation and the Raman spectra of CIGS films showed only the Al mode peak at 173cm$\^$-1/. Scanning electron microscopy results revealed very small grains at 2nd/3rd stage growth temperature of 480$^{\circ}C$. At higher temperatures, the grain size increased together with a reduction in the number of the voids. The optimization of experimental parameters above mentioned, through the repeated fabrication and characterization of unit layers and devices, led to the highest conversion efficiency of 15.4% from CIGS-based thin film solar cell with a structure of Al/ZnO/CdS/CIGS/Mo/glass.

급속열처리장치 승온 조건에 따른 CIGS 박막 태양전지 특성 연구 (Characteristics of CIGS Thin Film Photovoltaic Cells with a Change of Rising-Temperature Time in Rapid Thermal Processing)

  • 정용민;박찬일;조금배
    • 조명전기설비학회논문지
    • /
    • 제27권3호
    • /
    • pp.107-112
    • /
    • 2013
  • Cu(In,Ga)$Se_2$ (CIGS) thin films were annealed on molybdenium/sodalime glass substrates of $300{\times}300mm^2$ by rapid thermal processing (RTP) with 2-step rising-temperature times in $N_2$ ambient. Morphological property, structural characteristics and chemical composition of the precursor of CIGS thin films were influenced directly with a change of $1^{st}$-step rising-temperature time in RTP whereas there is no significant difference with the different $2^{nd}$-step rising-temperature time (final crystallization temperature). The shorter $1^{st}$-step rising-temperature time in RTP obtained the higher photovoltaic cell efficiency from 7.469% to 8.479% even though the ideal composition in CIGS thin films could not be accoplished in this study.

Se원소의 증발조건이 Cu(InGa)Se$_2$ 박막 태양전지 특성에 미치는 영향 (Characterization of Cu(InGa)Se$_2$ Solar Cells with Se Evaporation Conditions)

  • 김석기;이정철;강기환;윤경훈;박이준;송진수;한상옥
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.383-386
    • /
    • 2002
  • Polycrystalline Cu(In,Ga)Se$_2$(CIGS) thin-films were grown by co-evaporation on a soda lime glass substrate. In this paper the effects of the Se evaporation temperature on the properties of CuIn0.75Ga0.25Se2 (CIGS) thin films. Structure, surface morphology and optical properties of CIGS thin films deposited at various Se evaporation temperatures have been investigated using a number of analysis techniques. X-ray diffraction (XRD) analysis shows that CIGS films exhibit a strong <112> preferred orientation. As expected, at higher Se evaporation temperatures the films displayed a lower degree of crystallinity. The <112> peak was also enhanced and other CIGS peaks appeared simultaneously. These results were supported by experimental work using scanning electron microscopy When the Se evaporation temperature was increased, the average grain size also decreased together with a reduction Cu content. The Se evaporation temperature also had a significant inf1uence on the transmission spectra. Increasing the Se evaporation temperature, the cell efficiency was improved dramatically to 11.75% with Voc = 556 mV, Jsc = 32.17 mA/cm2 and FF = 0.66. The Se evaporation temperature is an important parameter in thin film deposition regardless of the deposition technique being used to deposit thin films

  • PDF

열처리와 In 중간층 적용에 의한 CBD-In2S3/CIGS 태양전지의 특성 향상 (Annealing and In Interlayer Effects on the Photovoltaic Properties of CBD-In2S3/CIGS Solar Cells)

  • 김희섭;김지혜;신동협;안병태
    • 한국재료학회지
    • /
    • 제21권8호
    • /
    • pp.432-438
    • /
    • 2011
  • In this study, chemical bath deposited (CBD) indium sulfide buffer layers were investigated as a possible substitution for the cadmium sulfide buffer layer in CIGS thin film solar cells. The performance of the $In_2S_3$/CIGS solar cell dramatically improved when the films were annealed at $300^{\circ}C$ in inert gas after the buffer layer was grown on the CIGS film. The thickness of the indium sulfide buffer layer was 80 nm, but decreased to 60 nm after annealing. From the X-ray photoelectron spectroscopy it was found that the chemical composition of the layer changed to indium oxide and indium sulfide from the as-deposited indium hydroxide and sulfate states. Furthermore, the overall atomic concentration of the oxygen in the buffer layer decreased because deoxidation occurred during annealing. In addition, an In-thin layer was inserted between the indium sulfide buffer and CIGS in order to modify the $In_2S_3$/CIGS interface. The $In_2S_3$/CIGS solar cell with the In interlayer showed improved photovoltaic properties in the $J_{sc}$ and FF values. Furthermore, the $In_2S_3$/CIGS solar cells showed higher quantum efficiency in the short wavelength region. However, the quantum efficiency in the long wavelength region was still poor due to the thick buffer layer.

셀레늄과 세라믹 혼합분말을 사용한 Cu0.9In0.7Ga0.3Se2 분말층의 소결거동 연구 (Heat Treatment of Cu0.9In0.7Ga0.3Se2 Powder Layer with a Mixture of Selenium and Ceramic Powder)

  • 송봉근;황윤정;박보인;이승용;이재승;박종구;이도권;조소혜
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.115-119
    • /
    • 2014
  • $Cu(In,Ga)Se_2$ (CIGS) thin films have been used as a light absorbing layer in high-efficiency solar cells. In order to improve the quality of the CIGS thin film, often selenization step is applied. Especially when the thin film was formed by non-vacuum powder process, selenization can help to induce grain growth of powder and densification of the thin film. However, selenization is not trivial. It requires either the use of toxic gas, $H_2Se$, or expensive equipment which raises the overall manufacturing cost. Herein, we would like to deliver a new, simple method for selenization. In this method, instead of using a costly two-zone furnace, use of a regular tube furnace is required and selenium is supplied by a mixture of selenium and ceramic powder such as alumina. By adjusting the ratio of selenium vs. alumina powder, selenium vaporization can be carefully controlled. Under the optimized condition, steady supply of selenium vapor was possible which was evidently shown by large grain growth of CIGS within a thin powder layer.

한국 중부 지역의 태양광 모듈 타입에 따른 발전량 특성 (Power Output in Various Types of Solar Panels in the Central Region of Korea)

  • 장효식
    • 한국태양에너지학회 논문집
    • /
    • 제38권1호
    • /
    • pp.37-44
    • /
    • 2018
  • Solar panels are modules made up of many cells, like the N-type monosilicon, P-type monosilicon, P-type multisilicon, amorphous thin-film silicon, and CIGS solar cells. An efficient photovoltaic (PV) power is important to use to determine what kind of cell types are used because residential solar systems receive attention. In this study, we used 3-type solar panels - such as N-type monosilicon, P-type monosilicon, and CIGS solar cells - to investigate what kind of solar panel on a house or building performs the best. PV systems were composed of 3-type solar panels on the roof with each ~1.8 kW nominal power. N-type monosilicon solar panel resulted in the best power generation when monitored. Capacity Utilization Factor (CUF) and Performance Ratio (PR) of the N-type Si solar panel were 14.6% and 75% respectively. In comparison, N-type monosilicon and CIGS solar panels showed higher performance in power generation than P-type monosilicon solar power with increasing solar irradiance.