• 제목/요약/키워드: CIGS solar cell

검색결과 168건 처리시간 0.029초

Se원소의 증발조건이 Cu(InGa)Se$_2$ 박막 태양전지 특성에 미치는 영향 (Characterization of Cu(InGa)Se$_2$ Solar Cells with Se Evaporation Conditions)

  • 김석기;이정철;강기환;윤경훈;박이준;송진수;한상옥
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.383-386
    • /
    • 2002
  • Polycrystalline Cu(In,Ga)Se$_2$(CIGS) thin-films were grown by co-evaporation on a soda lime glass substrate. In this paper the effects of the Se evaporation temperature on the properties of CuIn0.75Ga0.25Se2 (CIGS) thin films. Structure, surface morphology and optical properties of CIGS thin films deposited at various Se evaporation temperatures have been investigated using a number of analysis techniques. X-ray diffraction (XRD) analysis shows that CIGS films exhibit a strong <112> preferred orientation. As expected, at higher Se evaporation temperatures the films displayed a lower degree of crystallinity. The <112> peak was also enhanced and other CIGS peaks appeared simultaneously. These results were supported by experimental work using scanning electron microscopy When the Se evaporation temperature was increased, the average grain size also decreased together with a reduction Cu content. The Se evaporation temperature also had a significant inf1uence on the transmission spectra. Increasing the Se evaporation temperature, the cell efficiency was improved dramatically to 11.75% with Voc = 556 mV, Jsc = 32.17 mA/cm2 and FF = 0.66. The Se evaporation temperature is an important parameter in thin film deposition regardless of the deposition technique being used to deposit thin films

  • PDF

Al 그리드와 ZnO 투명전도막 의 공정변화에 따른 Cu(In,Ga)Se2 박막태양전지의 특성 연구 (Effect of Process Variation of Al Grid and ZnO Transparent Electrode on the Performance of Cu(In,Ga)Se2 Solar Cells)

  • 조보환;김선철;문선홍;김승태;안병태
    • Current Photovoltaic Research
    • /
    • 제3권1호
    • /
    • pp.32-38
    • /
    • 2015
  • CIGS solar cell consisted of various films. In this research, we investigated electrode materials in $Cu(In,Ga)Se_2$ (CIGS) cells, including Al-doped ZnO (ZnO:Al), intrinsic ZnO (i-ZnO), and Al films. The sputtered ZnO:Al film with a sputtering power at 200W showed the lowest series resistance and highest cell efficiency. The electrical resistivity of the 200-W sputtered ZnO:Al film was $5.2{\times}10^{-4}{\Omega}{\cdot}cm$ by the rapid thermal annealing at $200^{\circ}C$ for 1 min. The electrical resistivity of i-ZnO was not measurable due to its high resistance. But the optical transmittance was highest with less oxygen supply and high efficiency cell was achieved with $O_2/(Ar+O_2)$ ratio was 1% due to the increase of short-circuit current. No significant change in the cell performance by inserting a Ni layer between Al and ZnO:Al films was observed.

Cd 수용액 처리 조건에 따른 $Cu(In,Ga)Se_2$ 태양전지의 성능변화

  • 박상욱;박순용;이은우;이상환;김우남;전찬욱
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.35.2-35.2
    • /
    • 2010
  • 최근 $Cu(In,Ga)Se_2$(CIGS)와 같은 박막 태양전지에 대한 연구가 많은 관심을 끌고 있다. CIGS 태양전지의 광투과층으로 사용되고 있는 II-VI족 화합물 반도체인 CdS는 상온에서의 에너지 밴드 갭(band gap)이 2.42eV 정도로서, 가시광영역의 많은 빛을 투과시키고, 적절한 제작 조건하에서 비교적 낮은 비저항을 나타내기 때문에 널리 사용되고 있다. 하지만 CIGS 태양전지 연구는 주로 CIGS 흡수층 제조공정에 편중되어 있으며, CdS 버퍼층 공정조건에 대한 체계적인 연구가 부족하다고 판단된다. 습식공정인 Chemical Bath Deposition (CBD)에 의해 주로 제조되는 CdS는 단순한 제조공정에도 불구하고 CIGS 태양전지의 성능에 지대한 영향을 미치는 것으로 알려져 있다. 특히, CdS합성반응이 개시되기 전까지의 용액잔류시간 (dip time)은 CIGS내로의 Cd이온 농도를 결정하는 중요한 공정변수로 판단된다. CIGS 표면에 Cd이 도핑될 경우, CIGS는 n형 전도성을 갖는 얇은 층을 갖게 되어 전체적으로 n-CIGS/p-CIGS의 동종 접합을 형성하는 장점을 부여할 것으로 기대된다. 따라서 본 논문에서는 dip time을 주요변수로 하여 CIGS 태양전지의 성능에 미치는 영향을 주로 고찰하였다. Cd의 확산 정도는 secondary ion mass spectroscopy (SIMS)를 이용하여 정량화하였으며, 제조된 CIGS 태양전지의 전류-전압 특성과 상관성을 제시하고자 한다.

  • PDF

Quantification of $Cu(In_xGa_{1-x})Se_2$ Solar Cell by SIMS

  • Jang, Jong-Shik;Hwang, Hye-Hyen;Kang, Hee-Jae;Min, Hyung-Sik;Han, Myung-Sub;Suh, Jung-Ki;Cho, Kyung-Haeng;Chung, Yong-Duck;Kim, Je-Ha;Kim, Kyung-Joong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.275-275
    • /
    • 2012
  • The relative composition of $Cu(InGa)Se_2$ solar cells is one of the most important measurement issues. However, quantitative analysis of multi-component alloy films is difficult by surface analysis methods due to severe matrix effect. In this study, quantitative depth profiling analysis of CIGS films was investigated by secondary ion mass spectrometry (SIMS). The compositions were measured by SIMS using the alloy reference relative sensitivity factors derived from the certified compositions and the total counting numbers of each element. The compositions measured by SIMS were linearly proportional to those by inductively coupled plasma-mass spectrometry (ICP-MS) using isotope dilution method. In this study, the quantification measured by ICP-MS method is compared with the composition calculated by SIMS depth profiles with AR-RSFs obtained from the reference. The SIMS depth profile of CIGS thin films according to the manufacturing condition was converted into compositional depth profile.

  • PDF

(Ga,Al):ZnO 투명전극층의 두께에 따른 CIGS 박막 태양전지의 성능 변화 연구 (Influence of (Ga,Al) : ZnO Window Layer Thickness on the Performance of CIGS Thin Film Solar Cells)

  • 차정화;전찬욱
    • Current Photovoltaic Research
    • /
    • 제5권1호
    • /
    • pp.28-32
    • /
    • 2017
  • In this paper, (Ga,Al):ZnO layers were deposited by sputtering to evaluate the device performance according to the thickness of the layer. As the thickness increased, low transmittance was observed, but the electrical resistance was improved. On the other hand, the highest efficiency was recorded at 400 nm device than a 500 nm of it. Therefore, since the critical thickness exists, it is necessary to set an adequate TCO layer thickness in consideration of the characteristics of the underlying film and the device.

CNTs Electric Field Enhancement of CIGS Solar Cells

  • 한성환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.67-67
    • /
    • 2011
  • Compound semiconductor/CNTs composites have shown considerably improved efficiency improvement in photovoltaic devices, which is often attributed to two different factors. One is the formation of efficient electronic energy cascade structures. The other effect of CNTs on the performance of photovoltaic devices is the decrement of interfacial resistance. The interfacial resistances at n-type/ p-type materials and/or n-type materials/TCO electrode are reduced by an outstanding electrical property of CNTs. In addition to the effects of CNTs, we report the third reason for increment of efficiency in photovoltaic devices by CNT's well-known electrical field enhancement effects. The improved ${\beta}$ values in reverse-FE currents of CIGS electrode with SWNTs layers indicate the enhancement of electrical field in photovoltaic devices, which implies the acceleration of the electron transfer rate in the cell. Due to the formation of an efficient electronic energy cascade structure and the decrease of the interfacial resistance as well as the improvement of the electrical field in the photovoltaic devices, the power conversion efficiency of electrochemically deposited superstrate-type CIGS solar cells was increased 24.3% in the presence of SWNTs and showed 10.40% conversion efficiency.

  • PDF

Flower like Buffer Layer to Improve Efficiency of Submicron-Thick CuIn1-xGaxSe2 Solar Cells

  • Park, Nae-Man;Cho, Dae-Hyung;Lee, Kyu-Seok
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1129-1134
    • /
    • 2015
  • In this article, a study of a flower like nanostructured CdS buffer layer for improving the performance of a submicron-thick $CuIn_{1-x}Ga_xSe_2$ (CIGS) solar cell (SC) is presented. Both its synthesis and properties are discussed in detail. The surface reflectance of the device is dramatically decreased. SCs with flower like nanostructured CdS buffer layers enhance short-circuit current density, fill factor, and open-circuit voltage. These enhancements contribute to an increase in power conversion efficiency of about 55% on average compared to SCs that don't have a flower like nanostructured CdS buffer layer, despite them both having the same CIGS light absorbing layer.

CIGS 태양전지의 윈도우 층에 적용 가능한 스퍼터링으로 증착한 AZO 박막의 공정압력의 영향에 따른 특성 연구 (A Study on the Effect of Process Pressure on AZO Thin Films Sputtered for the Windows Layers of CIGS Solar Cells)

  • 윤여탁;조의식;권상직
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.89-93
    • /
    • 2017
  • For various process pressures, aluminum doped zinc oxide(AZO) films were deposited by in-line pulsed-DC sputtering. The deposited AZO films were optically and electrically investigated and analyzed for the window layers of CIGS solar cell systems. As the pressure was increased from 9 mtorr to 15 mtorr, the thickness of AZO was decreased as a result of scattering and its sheet resistance was rapidly increased. The transmittance of AZO was slightly decreased as the pressure was increased and the calculation of figure of merit(F.O.M) was dependent on the sheet resistance. The structural characteristics of AZO thin films analyzed by X-ray diffraction(XRD) showed no significant dependency according to the pressure.

  • PDF

고효율 태양전지모듈의 성능측정 방법 (Performance Measurement Method of Several Types of Photovoltaic Module Depending on Efficiency)

  • 김경수;강기환;유권종;윤순길
    • 한국태양에너지학회 논문집
    • /
    • 제31권1호
    • /
    • pp.93-99
    • /
    • 2011
  • To guarantee more exact maximum power of solar cell module, it is absolutely required to have performance characteristics of various solar cells. Today, there are many types of solar simulator for large area measurement. But it is very opaque how to select the best one for various solar cell module like crystalline silicon solar cell, high efficiency solar cell, amorphous silicon thin film solar cell, CdTe and CIGS solar cell module. So, in this paper 4 types of photovoltaic module were selected to compare the electrical characteristics by changing light pulse duration time and voltage scan direction. Light pulse duration time was varied from 10msec to 800msec. And two types of voltage scan directions, Voc->Isc and Isc->Voc were selected. From this results, optimum measuring condition was suggested and electrical variation was analysed for each types of solar cell module. The detail description is specified as the following paper.

아크 이온 플레이팅법을 이용한 CIGS용 Mo 후면전극 제조에 관한 연구 (Study on manufacture of Mo back contact films for CIGS solar cell by the cathodic arc ion plating)

  • 김강삼;조용기;정용덕;김제하
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.128-129
    • /
    • 2011
  • Mo 박막은 전기전도성과 열적 안전성이 우수하여 CIGS 용 후면전극으로 사용되고 있다. 많은 연구자들이 스퍼터링법을 이용하여 Mo 박막을 이중 박막으로 제조하고 있으며, CIGS 용 기판재로 SLG(Soda Lime Glass)와 연성기판재등이 주로 이용되고 있다. 연구에서는 SLG 기판재를 이용하여 스퍼터링법과 증착속도 및 이온화 등이 우수한 아크 이온 플레이팅법으로 Mo 박막을 제조하였으며, 제조된 Mo 박막을 CIGS 증착공정을 통하여 태양전지 효율을 측정하였다. 스퍼터링법과 아크 이온 플레이팅법으로 제조된 CIGS용 Mo 후면전극 위에 CIGS 박막 제조시 최대 효율은 11.43%, 11.14% 을 나타내었으며 Fill factor 는 67%와 57.3% 의 결과을 얻었다. 제조된 CIGS 셀의 단면 구조를 분석하기 위해 SEM 과 EDS 를 이용하였다. 두 공정방법으로 제조된 CIGS 셀의 단면을 관찰하여 Mo 전극위에 CIGS 박막 성장시의 입자크기가 스퍼터링법보다 아크 이온 플레이팅법이 박막성장이 더딘 것을 알 수 있었다. 그리고 아크 이온 플레이팅법을 이용한 SLG 기판재위에 CIGS 용 Mo 후면전극의 제조와 적용 가능성에 대해 알아보았다.

  • PDF