• Title/Summary/Keyword: CIGS solar cell

Search Result 168, Processing Time 0.033 seconds

Morphology and Electrical Properties of Back Electrode for Solar Cell Depending on the Mo : Na/Mo Bilayer Thickness (Mo : Na/Mo 이중층 구조 두께에 따른 태양전지 후면전극의 조직 및 전기적 특성)

  • Shin, Younhak;Kim, Myunghan
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.495-500
    • /
    • 2013
  • Mo-based thin films are frequently used as back electrode materials because of their low resistivity and high crystallinity in CIGS chalcopyrite solar cells. Mo:Na/Mo bilayer thin films with $1{\mu}m$ thickness were deposited on soda lime glass by varying the thickness of each layer using dc-magnetron sputtering. The effects of the Mo:Na layer on morphology and electrical property in terms of resistivity were systematically investigated. The resistivity increased from $159{\mu}{\Omega}cm$ to $944{\mu}{\Omega}cm$; this seemed to be caused by increased surface defects and low crystallinity as the thickness of Mo:Na layer increased from 100 nm to 500 nm. The surface morphologies of the Mo thin films changed from a somewhat coarse fibrous structures to irregular and fine celled structures with increased surface cracks along the cell boundaries as the thickness of Mo:Na layer increased. Na contents varied drastically from 0.03 % to 0.52 % according to the variation of Mo:Na layer thickness. The change in Na content may be ascribed to changes in surface morphology and crystallinity of the thin films.

Influence of sputtering pressure on structural and electrical properties of molybdenum thin film for solar cell application (태양전지용 Mo 박막의 스퍼터 압력에 따른 구조적, 전기적 특성의 변화)

  • Kim, Joong-gyu;Lee, Su-ho;Lee, Jae-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.786-788
    • /
    • 2013
  • Molybdenum (Mo) thin film has high electrical conductivity and has been used for a back contact of CIGS thin film solar cell. Generally, the electrical conductivity and the adhesion between the substrate and the film is greatly affected by sputtering conditions such as sputtering power, working pressure, and substrate temperature. In this study, Mo films were deposited by DC magnetron sputtering technique. The influence of sputtering pressure on the electrical and structural properties of Mo films was investigated by using SEM(scanning electron microscope), XRD(X-ray Diffraction), 4-point probe, Reflectance, Hall measurement.

  • PDF

Three-Dimensional Automated Crystal Orientation and Phase Mapping Analysis of Epitaxially Grown Thin Film Interfaces by Using Transmission Electron Microscopy

  • Kim, Chang-Yeon;Lee, Ji-Hyun;Yoo, Seung Jo;Lee, Seok-Hoon;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.183-188
    • /
    • 2015
  • Due to the miniaturization of semiconductor devices, their crystal structure on the nanoscale must be analyzed. However, scanning electron microscope-electron backscatter diffraction (EBSD) has a limitation of resolution in nanoscale and high-resolution electron microscopy (HREM) can be used to analyze restrictive local structural information. In this study, three-dimensional (3D) automated crystal orientation and phase mapping using transmission electron microscopy (TEM) (3D TEM-EBSD) was used to identify the crystal structure relationship between an epitaxially grown CdS interfacial layer and a $Cu(In_xGa_{x-1})Se_2$ (CIGS) solar cell layer. The 3D TEM-EBSD technique clearly defined the crystal orientation and phase of the epitaxially grown layers, making it useful for establishing the growth mechanism of functional nano-materials.

Electrical, Optical, and Electrochemical Corrosion Resistance Properties of Aluminum-Doped Zinc Oxide Films Depending on the Hydrogen Content

  • Cho, Soo-Ho;Kim, Sung-Joon;Jeong, Woo-Jun;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.116-125
    • /
    • 2018
  • Aluminum-doped zinc oxide (AZO) is a commonly used material for the front contact layer of chalcopyrite $CuInGaSe_2$ (CIGS) based thin film solar cells since it satisfies the requisite optical and electrical properties with low cost and abundant elemental availability. Low-resistivity and high-transmission front contacts have been developed for high-performance CIGS solar cells, and nearly meet the required performance. However, the durability of the cell especially for the corrosion resistance of AZO films has not been studied intensively. In this work, AZO films were prepared on Corning glass 7059 substrates by radio frequency magnetron sputtering depending on the hydrogen content. The electrical and optical properties and electrochemical corrosion resistance of the AZO films were evaluated as a function of the hydrogen content. With increasing hydrogen content to 6 wt%, the crystallinity, crystal size, and surface roughness of the films increased, and the resistivity decreased with increased carrier concentration, Hall mobility, oxygen vacancies, and $Zn(OH)_2$ binding on the AZO surface. At a hydrogen content of 6 wt%, the corrosion resistance was also relatively high with less columnar morphology, shallow pore channels, and lower grain boundary angles.

Technical Tasks and Development Current Status of Organic Solar Cells (유기 태양전지의 개발 현황과 기술 과제)

  • Jang, Ji Geun;Park, Byung Min;Lim, Sungkyoo;Chang, Ho Jung
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.434-442
    • /
    • 2014
  • Serious environmental problems have been caused by the greenhouse effect due to carbon dioxide($CO_2$) or nitrogen oxides($NO_x$) generated by the use of fossil fuels, including oil and liquefied natural gas. Many countries, including our own, the United States, those of the European Union and other developed countries around the world; have shown growing interest in clean energy, and have been concentrating on the development of new energy-saving materials and devices. Typical non-fossil-fuel sources include solar cells, wind power, tidal power, nuclear power, and fuel cells. In particular, organic solar cells(OSCs) have relatively low power-conversion efficiency(PCE) in comparison with inorganic(silicon) based solar cells, compound semiconductor solar cells and the CIGS [$Cu(In_{1-x}Ga_x)Se_2$] thin film solar cells. Recently, organic cell efficiencies greater than 10 % have been obtained by means of the development of new organic semiconducting materials, which feature improvements in crystalline properties, as well as in the quantum-dot nano-structure of the active layers. In this paper, a brief overview of solar cells in general is presented. In particular, the current development status of the next-generation OSCs including their operation principle, device-manufacturing processes, and improvements in the PCE are described.

Effects of Ag Content on Co-evaporated Wide Bandgap (Ag,Cu)(In,Ga)Se2 Solar Cells (Ag 함량이 진공증발법으로 형성된 광금지대 (Ag,Cu)(In,Ga)Se2 태양전지에 미치는 영향)

  • Park, Joo Wan;Yun, Jae Ho;Cho, Jun Sik;Yu, Jin Su;Lee, Hi-Deok;Kim, Kihwan
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.16-20
    • /
    • 2015
  • Ag addition in chalcopyrite materials is known to lead beneficial changes in aspects of structural and electronic properties. In this work, the effects of Ag alloying of $Cu(In,Ga)Se_2$-based solar cells has been investigated. Wide bandgap $(Ag,Cu)(In_{1-x},Ga_x)Se_2$ (x = 0.75~0.8) films have been deposited using a three-stage co-evaporation with various Ag/(Ag+Cu) ratios. With Ag alloying the $(Ag,Cu)(In_{1-x},Ga_x)Se_2$ (x~0.8) films were found to have greater grainsize and film thickness. Device were also fabricated with the $(Ag,Cu)(In_{1-x},Ga_x)Se_2$ (x~0.8) films and their J-V and quantum efficiency measurements were carried out. The highest-efficiency $(Ag,Cu)(In_{1-x},Ga_x)Se_2$ solar cell with Eg > 1.5 eV had an efficiency of 12.2% with device parameters $V_{OC}=0.810V$, $J_{SC}=21.7mA/cm^2$, and FF = 69.0%.

Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell (유기태양전지의 효율 및 수명 향상을 위한 기능성 계면 소재 연구)

  • Hong, Kihyon;Park, Sun-Young;Lim, Dong Chan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.447-454
    • /
    • 2014
  • Organic solar cells (OSCs) have intensively studied in recent years due to their advantages such as cost effectiveness and possibility of applications in flexible devices. In spite of the high power conversion efficiency (PCE) of 10 %, the OSCs still have a draw back of their low environmental stability due to the oxidization of aluminum cathode and etching of transparent conducting oxide as electrode. To solve these problems, the inverted structured OSCs (I-OSCs) having greatest potential for achieving an improvement of device performances are suggested. Therefore, there are a lot of studies to develope of interface layer based on organic/inorganic materials for the electron transport layer (ETL) and passivation layer, significant advancements in I-OSCs have driven the development of interface functional materials including electron transport layer. Recent efforts to employing 2D/3D zinc oxide (ZnO) based ETL into I-OSCs have produced OSCs with a power conversion efficiency level that matches the efficiency of ~9 %. In this review, the technical issues and recent progress of ZnO based ETL in I-OSCs to enhancement of device efficiency and stability in terms of materials, process and characterization have summarized.

Characterization of $Cu(In_xGa_{1-x})Se_2$ Solar Cells with Ga Content (Ga 함량에 따른 $Cu(In_xGa_{1-x})Se_2$ 태양전지의 특성분석)

  • Kim, Seok-Ki;Kwon, Se-Han;Lee, Doo-Yeol;Lee, Jeong-Churl;Kang, Ki-Whan;Yoon, Kyung-Hoon;Ahn, Byung-Tae;Song, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1264-1267
    • /
    • 1998
  • $Cu(In_xGa_{1-x})Se_2$ thin films were prepared and characterized with various Ga contents. As the Ga content increased, the grain size of CIGS film became smaller. The 2 $\theta$ values in XRD patterns were shifted to larger values and the overlapped peaks were splitted. The energy bandgap increased from 1.04 to 1.67 eV and the resistivity decreased. The solar cell fabricated with ZnO/CdS/$Cu(In_{0.7}Ga_{0.3})Se_2/Mo$ structure yielded an efficeincy of 14.48% with an acitive area of 0.18 $cm^2$. The efficiency decreased with further increase of Ga content.

  • PDF

Preparation of CIGSe thin film solar cells by solution process and selenization

  • Park, Mi-Seon;Jo, Hyo-Jeong;Seong, Si-Jun;Hwang, Dae-Gyu;Kim, Dae-Hwan;Gang, Jin-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.410-410
    • /
    • 2011
  • Chalcopyrite계 화합물 $CuInGaSe_2$($CIGSe_2$)는 높은 광흡수율과 전기적 특성 및 안정성, 그리고 1.02~1.67 eV 범위의 최적의 에너지 밴드갭을 가져 박막태양전지용 광흡수층 재료로 많은 관심을 받고 있다. 일반적으로 $CIGSe_2$ 박막태양전지의 광흡수층을 형성하는 공정은 고효율 태양전지 제작이 가능한 진공공정을 이용한다. $CIGSe_2$ 광흡수층을 형성하는데 있어 진공 공정을 용액기반 공정으로 대처한다면 저비용으로 보다 간단하면서 효율적인 태양전지의 제조가 가능 할 것으로 기대된다. 본 연구에서는 $CIGSe_2$ 광흡수층을 2 단계에 걸쳐 제작하였다. 먼저 Cu, In, Ga 성분을 포함하는 용액을 이용하여 CIG 전구체막을 형성한 후, 다음 단계로 selenization 공정을 진행함으로써 $CIGSe_2$ 박막을 제작하였다. $CIGSe_2$의 결정 성장을 위하여 selenization 공정의 열처리 온도와 시간을 조절하여 CIG 전구체막과 Se 원소의 결합반응을 최적화할 수 있는 공정 조건을 확보하였으며 이를 통해 우수한 결정 및 전기적 특성을 갖는 $CIGSe_2$박막을 제조하였다. 제작된 $CIGSe_2$ 박막의 광전변환 효율을 측정하여 단위셀로서의 구현이 가능함을 확인하였으며 XRD, SEM, EDS, UV-visible을 통하여 $CIGSe_2$박막의 특성을 분석하였다.

  • PDF

Fabrication of $Cu_xSe$ thin films by selenization of $Cu_xSe$ nanoparticles prepared by a colloidal process (CIS 태양전지용 이원 화합물 $Cu_xSe$ 나노입자를 이용한 $Cu_xSe$ 박막 제조)

  • Kim, Kyun-Hwan;Ahn, Se-Jin;Yun, Jae-Ho;Gwak, Ji-Hye;Kim, Do-Jin;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.96-98
    • /
    • 2009
  • This report summarizes our recent efforts to produce large-grained CIGS materials from porous nanoparticle thin films. In our approach, a $Cu_xSe$ nanoparticle colloid were first prepared by reacting a mixture of CuI in pyridine with $Na_2Se$ in methanol at reduced temperature. purified colloid was sprayed onto heated molybdenum-coated sodalime glass substrates to form thin film. After thermal processing of the thin film under a selenium ambient. $Cu_xSe$ colloid and thin film were characterized by scanning electron microscopy, x-ray diffraction. The optical(direct) band gap energy of $Cu_xSe$ thin films is 1.5 eV.

  • PDF