• Title/Summary/Keyword: CHS

Search Result 221, Processing Time 0.033 seconds

Detection of Zymogenic ChsC Activity in Vegetative Hyphae of Aspergillus nidulans. (Aspergillus nidulans 영양균사에서 효소전구체형 ChsC 활성의 검출)

  • 박범찬;박윤희;박희문
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.178-182
    • /
    • 2004
  • In the vegetative hyphae of Aspergillus nidulans, a zymogenic form of the class I chitin synthase activity was successfully measured by the assay condition for Saccharomyces cerevisiae class I chitin synthase, Chsl. The class I chitin synthase activity of the A. nidulans chsC wild type strain was increased about six-fold by trypsin-pretreatment, but that of the chsC disruption strain revealed no increase. Interestingly enough, level of the class I chitin synthase activity of the chsC disruption strain was almost the same as that of the chsC wild type without trypsin-pretreatment. These results indicated that the A. nidulans ChsC activity could be measured by account-ing the class I chitin synthase activity without the trypsin-pretreatment as an internal control. Consistence to the expression pattern of the chsC revealed by northern blot analysis, the activity of ChsC was increased upon reaching the culture time for acquiring developmental competence. Our results shown here also supported the previous report suggesting the possible involvement of ChsC in vegetative hyphal growth of A. nidulans.

Variation of Microbial Communities with Crop Species in Controlled Horticultural Soils of Gyeongnam Province

  • Lee, Young-Han;Lee, Seong-Tae;Kim, Eun-Seok;Cho, Yong-Cho;Ok, Yong Sik;Kim, Min-Keun;Kim, HyeRan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.182-186
    • /
    • 2013
  • In this study, we examined the chemical properties and microbial community characteristics in 25 controlled horticultural soils (CHS) sampled from Gyeongnam Province by fatty acid methyl ester (FAME) method. The electrical conductivity of watermelon CHS was significantly (p < 0.05) higher than those of red pepper CHS, pumpkin CHS, and strawberry CHS. The amounts of total FAMEs, total bacteria, gram-negative bacteria, gram-positive bacteria, and fungi were significantly (p < 0.05) higher in red pepper CHS than those in strawberry CHS and pumpkin CHS. In addition, higher (p < 0.05) ratios of cy19:0 to $18:1{\omega}7c$ were detected in tomato CHS than those in watermelon CHS, pumpkin CHS, and red pepper CHS. This implied that microbial communities of tomato CHS were stressed more than other species of cultivation soils. Actinomycetes community in red pepper CHS was significantly (p < 0.05) higher than those in tomato CHS, strawberry CHS, and watermelon CHS. Differences in soil microbial community composition were highly associated with cultivated crop species which might result from the management inputs such as fertilizer, herbicide, and irrigation.

The Regulation Mechanism of Chitin Synthetases in Saccharomyces cerevisiae

  • Choi, Won-Ja
    • Proceedings of the Zoological Society Korea Conference
    • /
    • 1995.10b
    • /
    • pp.83-83
    • /
    • 1995
  • The three chitin synthetases of Saccharomyces cerevisiae, Chs1, Chs2, and Chs3, participate in septum and cell wall formation of vegetative cells and in wall morphogenesis of conjugating cells and spores. Because of the differences in the nature and in the time of execution of their functions, the synthetases must be specifically and individually regulated. The nature of that regulation has been investigated by measuring changes in the levels of the three synthetases and of the messages of the three corresponding gnes, CDSI, CHS2, and CAL1/CSD2/DITl0l(referred to below as CAL1), during the budding cycles. For Chs1 and Chs3, posttranslational regulation, probably by activation of latent forms, appears to be predominant. Since Chs2, like Chs1, is found in the cell in the zymogenic form, a posttranslational activation step appears to be necessary for this synthetase also. The regulation mechanism was investigated to search the relationship of CAL1, CAL2 and CALJ which is involved in Chs3 activity us ing different assay methods other than previous one. Treatment of Chs3-containing membranes with detergents drastically reduced the enzymatic activity. Activity could, however, be restored by subsequent incubation with trypsin or other pro teases in the presence of UDPGlcNAc. Experiments wi th mutants in the three genes invoIved in Chs3 activity-CAL1, CAL2, and CALJ-showed that only CAL1 and CALJ are required for the proteaseelicited (zymogenic) activity. It is concluded that Chs3 IS a zymogen and that the CAL2 product funct ions as its activator.ivator.

  • PDF

Characterization and Phylogenetic Analysis of Chitin Synthase Genes from the Genera Sporobolomyces and Bensingtonia subrorea

  • Nam, Jin-Sik
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.4
    • /
    • pp.335-342
    • /
    • 2005
  • We cloned seven genes encoding chitin synthases (CHSs) by PCR amplification from genomic DNAs of four strains of the genus Sporobolomyces and of Bensingtonia subrosea using degenerated primers based on conserved regions of the CHS genes. Though amino acid sequences of these genes were shown similar as 176 to 189 amino acids except SgCHS2, DNA sequences were different in size, which was due to various introns present in seven fragments. Alignment and phylogenetic analysis of their deduced amino acid sequences together with the reported CHS genes of basidiomycetes separated the sequences into classes I, II and III. This analysis also permitted the classification of isolated CHSs; SgCHS1 belongs to class I, BsCHS1, SaCHS1, SgCHS2, SpgCHS1, and SsCHS1 belong to class II, and BsCHS2 belongs to class III. The deduced amino acid sequences involving in class II that were discovered from five strains were also compared with those of other basidiomycetes by CLUSTAL X program. The bootstrap analysis and phylogenetic tree by neighbor-joining method revealed the taxonomic and evolutionary position for four strains of the genus Sporobolomyces and for Bensingtonia subrosea which agreed with the previous classification. The results clearly showed that CHS fragments could be used as a valuable key for the molecular taxonomic and phylogenetic studies of basidiomycetes.

Identification of a Domain in Yeast Chitin Synthase 3 Interacting with Chitin Synthase 4 by Two-Hybrid Analysis

  • Park, Hyun-Sook;Shin-Jung-Choi;Nok-Hyun-Park;Chi-Hwa-Kim;Sung-Uk-Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.943-949
    • /
    • 2002
  • It has been proposed that chitin synthase 3 (CHS3)-nediated chitin synthesis during the vegetative cell cycle is regulated by chitin synthase 4 (CHS4) of Saccharomyces cerevisiae. To investigate direct protein-protein interaction between the coding products of these two genes, a domain of Chs3p that is responsible for interaction with Chs4p was identified, using the yeast two-hybrid system. This domain of 54 amino acids, termed MIRC3-4 (Maximum Interacting Region of Chs3p with Chs4p), is well conserved among CHS3 homologs of various fungi. Some mutations in MIRC3-4 resulted in a decrease in the enzymatic activity and chitin contents. Chs3p carrying those mutations exhibited weak interactions with Chs4p, when assayed by the yeast two-hybrid system. Surprisingly, all the mutants were sensitive to Calcofluor regardless of changes in enzymatic activities or chitin contents. This report deals with a core region in MIRC3-4 that affects the interaction with Chs4p.

Identification of a Domain in Yeast Chitin Synthase 3 Required for Biogenesis of Chitin Ring, But Not Cellular Chitin Synthesis

  • Park Hyun-Sook;Park Mee-Hyun;Kim Chi-Hwa;Woo Jeeun;Lee Jee-Yeon;Kim Sung-Uk;Choi Wonja
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.39-45
    • /
    • 2000
  • It hab been proposed that CHS3-mediated chitin synthesis during the vegitative cell cycle is regulated by CHS4. To investigate direct protein-protein interaction between their coding products, we used yeast two hybrid system and found that a domain of Chs3p was responsible for interaction with Chs4p. This domain, termed MIRC3-4 (maximum interacting region of chs3p with chs4p), spans from 647 to 700 residues. It is well conserved among CHS3 homologs of various fungi such as Candida albicans, Emericella nidulans, Neurospora crassa, Magnaporthe grisea, Ustilago maydis, Glomus versiforme, Exophiala dermatitidis, Rhizopus microsporus. A series of mutaion in the MIRC3-4 resulted in no appearance of chitin ring at the early G 1 phase but did not affect chitin synthesis in the cell wall after cytokinesis. Absence of chitin ring could be caused either by delocalization of Chs3p to the septum or by improper interaction with Chs4p. To discriminate those two, not mutually exclusive, alternatives, mutants cells were immunostained with Chs3p-specific antibody. Some exhibited localization of chs3p to the septum, while others failed. These results indicate that simultaneous localization and activation Chs3p by Chs4p is required for chitin ring synthesis.

  • PDF

Interacting Domain Between Yeast Chitin Synthase 3 and Chitin Synthase 4 is Involved in Biogenesis of Chitin Ring, but not for Cell Wall Chitin

  • Choi, Shin-Jung;Park, Nok-Hyun;Park, Hyun-Sook;Park, Mee-Hyun;Woo, Jee-Eun;Choi, Won-Ja
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.263-268
    • /
    • 2003
  • Recently, we identified a domain, termed MIRC3-4, for the protein-protein interaction between yeast chitin synthase 3 (CHS3) and chitin synthase 4 (CHS4). In this study, the functional roles of MIRC3-4 were examined at the G1 phase and cytokinesis of the cell cycle by Calcofluor staining and FISH. Some mutations in MIRC3-4 resulted in disappearance of the chitin ring in the early G1 phase, but did not affect chitin synthesis in the cell wall at cytokinesis. The chitin distribution in chs4 mutant cells indicated that CHS4 was involved in the synthesis of chitinring in the G1 phase and in the synthesis of cell wall chitin after cytokinesis, suggesting that Chs4p regulates chitin synthase 3 activity differently in G1 and cytokinesis. Absence of the chitin ring could be caused either by delocalization of Chs3p to the bud-neck or by improper interaction with Chs4p. When mutant cells were immunostained with a Chs3p-specific antibody to discriminate between these two alternatives, the mutated Ch3p was found to localize to the neck in all MIRC3-4 mutants. These results strongly irdicate that Chs4p regulates Chs3p as an activator but not a recruiter.

Isolation and Characterization of a Chitin Synthase Gene Fragments from Pleurotus sajor-caju (여름느타리의 Chitin synthase 유전자 단편분리 및 발현 특성 분석)

  • Jeong, Mi-Jeong;Park, Soo-Chul;Kim, Bum-Gi;Yoo, Young-Bok;Ryu, Jin-Chang
    • The Korean Journal of Mycology
    • /
    • v.26 no.3 s.86
    • /
    • pp.354-360
    • /
    • 1998
  • We isolated three amplified DNA fragments from P. sajor-caju by Polmerase chain reaction (PCR) using the chithin synthase specific primers. Since the sequence analysis of the these fragments showed significant homology to the other known chitin synthase gene, we regarded these cloned fragments as PsCHS1, PsCHS2, and PsCHS3 according to their size. The PsCHS3, which showed the highest sequence homology (83% identity in amino acid level with ChsI of Rhizopus oligosporus in conserved region), was selected to see expression pattern of the corresponding gene. The result of RT-PCR using internal primer of the PsCHS3 fragment revealed that PsCHS3 gene was only expressed in cap and mycelium but not in stipe. In order to see whether the PsCHS3 gene was to be induced by wounding, the comparison of the mRNA level of this gene between wounded and unwounded mature cap showed at least two times induction of this gene by wounding treatment.

  • PDF

Cloning and Characterization of UV-B Inducible Chalcone Synthase from Grape Cell Suspension Culture System and Its Expression Compared with Stilbene Synthase

  • Song, Won-Yong;In, Jun-Gyo;Lim, Yong-Pyo;Park, Kwan-Sam
    • Journal of Photoscience
    • /
    • v.7 no.2
    • /
    • pp.53-58
    • /
    • 2000
  • We performed the cloning of a chalcone synthase (CHS) gene, the key enzyme in the anthocyanin biosynthesis, from the cDNA library constructed with grape suspension cells irradiated UV-B. The PCR fragment was used to cloning the CHS gene. One CHS cDNA clone containing an open reading frame and a partial stilbene synthase (STS)cDNA, the stilbene-type phytoalexin, were isolated. The CHS cDNA clone (VCHS) showed 87% sequence homology with VvCHS (V.vinifea) and 72.3% identity with VSTSY(V.vinifea). its amino acid sequences were longer than any other CHS genes as 454 residues. Two genes were weakly expressed in white light irradiated cells, but highly induced in UV-B irradiated condition during 32 hours. Interestingly, the STS was quickly and abundantly expressed from 2 hours when supplemented with jasmonic acid (JA) and the maximum expression was observed at 4 hours and then gradually decreased. But, the additional UV-B or white light quickly degraded the STS expression than only JA treated grape suspension cells. The CHS also was rapidly induced with JA and the synergistical effect was observed at the addigional light treatment of UV-B or white light. These results are indicated that CHS and STS have different response mechanisms against the environmental stresses.

  • PDF

Anti-inflammatory Activity of Chihyo-san to Protect Respiratory Tissues from Asthmatic Damage

  • Cho, Ju-Hyung;NamGung, Uk;Kim, Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.710-718
    • /
    • 2006
  • The present study was carried out to investigate the effect of Chihyo-san (CHS) administration on asthma induced by Alum/OVA treatment in the mice. In CHS-treated animal group, lung weight, which was increased after asthma induction, was significantly decreased, and total number of cells in the lung, peripheral lymph node (PLN) and spleen tissue was significantly decreased in CHS-treated group compared to the asthma control group. The number of immune cells including natural killer (NK) cells in asthmatic animals was largely regulated by CHS treatment, showing a similar pattern as that of CsA-treated positive control group. Levels of mRNAs encoding inflammatory cytokines IL-5, IL-13, $TNF-{\alpha}$, and eotaxin were determined by RT-PCR in the lung tissue and showed decreases in CHS-treated group to the similar levels of CsA-treated control group, Histamine level in the serum was significantly lower in CHS-treated group than asthma-induced control group. Both haematoxylin and eosin staining and Masson's trichrome staining results showed decreased number of inflammatory cells, reduced immune cell infiltration, and normalized epithelial cell layering in the bronchial tissue of CHS-treated mouse group. Thus, the present findings suggest that CHS may be useful for protecting bronchial tissues from consistent inflammatory damages that occur in asthma patients.