• Title/Summary/Keyword: CHO-K1 cell

Search Result 2,622, Processing Time 0.034 seconds

Reduction of Ammonia Accumulation and Improvement of Cell Viability by Expression of Urea Cycle Enzymes in Chinese Hamster Ovary Cells

  • Chung, Myung-Il;Lim, Mi-Hee;Lee, Yun-Jeong;Kim, Ik-Hwan;Kim, Ick-Young;Kim, Jung-Hoe;Chang, Kern-Hee;Kim, Hong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.217-224
    • /
    • 2003
  • Previously, we developed a CHO cell line (CHO-OTC1-Al9) that expresses the first two enzymes in the urea cycle and exhibits a higher ammonia-removing ability and faster growth rate than a vector-controlled CHO cell line (CHO-neo-5). The current study was undertaken to develop a cell line with an ammonia-removing ability higher than the cell line developed previously. To accomplish this, CHO cell lines expressing the first three, first four, or all five enzymes of the urea cycle were constructed using a stable transfection method. Finally, the CHO-AS-16, CHO-AL-19, and CHO-Arg-11 cell lines expressing the first three, first four, and all five enzymes of the urea cycle, respectively, were selected and found to exhibit higher ammonia-removing ability than the CHO-OTC1-Al9 cell line. Among the three selected cell lines, CHO-AL-19 showed the highest ammonia-removing ability and highest cell viability at a higher cell density, with 40% and 15% lower ammonia concentration in the, culture media than that of CHO-neo-5 and CHO-OTC1-A19 cell lines, respectively. CHO-AL-19 also showed 44% and 10% higher cell viability than the CHO-neo-5 and CHO-OTC-Al9 cell lines, at a higher cell density, respectively. The ammonia concentrations in the culture media were expressed as the ammonia concentration/cell, and the CHO-AL-19 cells revealed 45-60% and 20% lower ammonia concentration/cell than the CHO-neo-5 and CHO-OTC1-Al9 cells, respectively.

Effects of Storage-protein 2 Derived from Silkworm Hemolymph on Reduction of Aggregation and Cell Death in CHO Cells (CHO 세포에서 누에 혈림프 유래 Storage-protein 2의 세포응집 및 세포사멸 억제 효과)

  • Lim, Jin-Hyuk;Cha, Hyun-Myoung;Kim, Z-Hun;Choi, Yong-Soo;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.66-72
    • /
    • 2016
  • Chinese hamster ovary (CHO) cells have been widely used for production of various recombinant proteins such as cytokines and monoclonal antibodies. The cell aggregation and cell death in CHO cell culture directly affect cell viability, and productivity and quality of products. In this study, we investigated preventing effects of storage-protein 2 (SP2) derived from silkworm hemolymph on cell aggregation and cell death in CHO cell culture producing albuminerythropoietin (Alb-EPO). The viable cell density in the culture supplemented with 2 mg/mL SP2 was 1.71-fold higher than that in control culture. Increased titer of Alb-EPO was also found in the culture with SP2. Morphology of CHO cells in SP2 supplemented cultures did not differ from that of control. In addition, the cell aggregation rate of the SP2 cultures was reduced 20% compared to the control. Finally, we confirmed that the apoptosis was strongly suppressed by addition of SP2 in the cultures. These results clearly demonstrate that SP2 can be served as an effective supplement for enhancing titer of Alb-EPO via reducing cell aggregation and cell death.

Comparison of Micronulcleus Induction of Cigarette Smoke Condensate in Various Cell Lines (세포주에 따른 담배연기응축물의 소핵생성 비교)

  • 신한재;손형옥;이영구;이동욱;현학철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.25 no.2
    • /
    • pp.128-136
    • /
    • 2003
  • Although tobacco smoke has been known to have genotoxicity as well as cytotoxicity, the sensitivity of the cell lines used against cigarette smoke is poorly understood. The objective of this study was to evaluate and compare the genotoxicity of several cell lines, which are routinely used in the in vitro assays, with cigarette smoke condensate(CSC) of Kentucky Reference Cigarette 1R4F. In the micronucleus(MN) induction assays, murine(CHO-K1, V79, BALB/c 3T3) cell lines and human(MCF-7, A549) ones were used. As a result, the CSC exhibited cytotoxicity with a concentration-dependent response in all cell lines. EC$_{50}$ of CSC in CHO-K1, V79, BALB/c 3T3, MCF-7 and A549 were 140, 125, 100, 116 and 109 $\mu\textrm{g}$/mL, respectively. On the other hand, the spontaneous micronucleated cell(MNC) frequency was stable and reproducible in every cell lines tested in this study. The dose-response of various cell lines to the induction of MN by CSC was estimated using linear regression analysis. CSC(0~100 $\mu\textrm{g}$/mL) caused a dose-dependent MN induction in CHO-K1, V79, BALB/c 3T3 and MCF-7 cell lines. Putting together all the data obtained and linear regression analysis of the data, we concluded that V79 cells are more susceptible to the accurate assessment of CSC-induced MN than the others.s.

Screening of High-Productivity Cell Lines and Investigation of Their Physiology in Chinese Hamster Ovary (CHO) Cell Cultures for Transforming Growth $Factor-{\beta}1$ Production

  • Chun, Gin-Taek;Lee, Joo-Buom;Nam, Sang-Uk;Lee, Se-Won;Jeong, Yeon-Ho;Choi, Eui-Yul;Kim, Ik-Hwan;Jeong, Yong-Seob;Kim, Pyeong-Hyeun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.121-129
    • /
    • 2002
  • Using recombinant Chinese hamster ovary (CHO) cells, strategies for developing high producers for the recombinant human Transforming Growth $Factor-{\beta}1$ ($TGF-{\beta}1$) protein are proposed and their physiological characteristics in cell cultures were investigated. $TGF-{\beta}1$ is a pleiotrophic polypeptide involved in various biological activities, including cell growth, differentiation, and deposition of extracellular matrix proteins. The CHO cells included human $TGF-{\beta}1$ cDNA in conjunction with a dihydrofolate reductase (DHFR) gene, which was cotransfected into the cells to amplify the transfected $TGF-{\beta}1$ cDNA. As a first-round screening of the transfected cells, a relatively high $TGF-{\beta}1$-producing cell line was selected, and then, it acquired a resistance to increasing concentrations of methotrexate (MTX) up to $60{\mu}M$,resulting in a significant improvement in its $TGF-{\beta}1$ biosynthetic ability. After applying a monoclonal selection strategy to the MTX-resistant cells, more productive cells were screened, including the APP-3, App-5, and App-8 cell lines. These high producers were compared with two other cell lines (AP-l cell line without amplification of transfected $TGF-{\beta}1$ cDNA and nontransfectant of $TGF-{\beta}1$ cDNA) in terms of cell growth, $TGF-{\beta}1$ productivity, sugar uptake, and byproduct formation, in the presence or absence of MTX in the culture medium. Consequently, both monoclonal selection as well as an investigation of the physiological characteristics were found to be needed for the efficient screening of higher $TGF-{\beta}1$ producers, even after the transfection and amplification of the transfected gene.

Osmoprotective Effect of Glycine Betaine on Foreign Protein Production in Hyperosmotic Recombinant Chinese Hamster Ovary Cell Cultures Differs among Cell Lines

  • Ryu, Jun-Su;Kim, Tae-Gyeong;Jeong, Ju-Yeong;Lee, Gyun-Min
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.313-316
    • /
    • 2000
  • When 3 recombinant Chinese hamster ovary (rCHO) cell lines, CHO/dhfr-B-22-4, $CS13-1.00^{\ast}$ and $CSl3-0.02^{\ast}$, were cultivated in hyperosmolar media resulting from NaCl addition, their specific foreign protein productivity increased with medium osmolality. Glycine betaine was found to have a strong osmoprotective effect on all 3 rCHO cell lines. Inclusion of 15 mM glycine betaine in hyperosmolar medim enabled rCHO cell lines to grow at 557-573 mOsm/kg where they could not grow in the absence of glycine betaine. However, effect of glycine betaine inclusion in hyperomolar medium on foreign protein production differed among rCHO cell lines. CHO/dhfr-B22-4 cells retained enhanced specific human thrombopoietin (hTPO) productivity in the presence of glycine betaine, and thereby, the maximum hTPO titer obtained at 573 mOsm/kg was increased by 72% over that obtained in the control culture with physiological osmolality (292 mOsm/kg). On the other hand, enhanced specific antibody productivity of $CSl3-1.00^{\ast}$ and $CSl3-0.02^{\ast}$ at elevated osmolality decreased significantly in the presence of glycine betaine at a cost of the recovery of cell growth. As a result, the maximum antibody titer at 557 mOsm/kg was similar to that obtained in the control culture with physiological osmolality. Taken together, efficacy of the simultanous use of hyperosmotic pressure and glycine betaine as a means to improve foreign protein production was variable among different rCHO cell lines.

  • PDF

Engineering the Cellular Protein Secretory Pathway for Enhancement of Recombinant Tissue Plasminogen Activator Expression in Chinese Hamster Ovary Cells: Effects of CERT and XBP1s Genes

  • Rahimpour, Azam;Vaziri, Behrouz;Moazzami, Reza;Nematollahi, Leila;Barkhordari, Farzaneh;Kokabee, Leila;Adeli, Ahmad;Mahboudi, Fereidoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1116-1122
    • /
    • 2013
  • Cell line development is the most critical and also the most time-consuming step in the production of recombinant therapeutic proteins. In this regard, a variety of vector and cell engineering strategies have been developed for generating high-producing mammalian cells; however, the cell line engineering approach seems to show various results on different recombinant protein producer cells. In order to improve the secretory capacity of a recombinant tissue plasminogen activator (t-PA)-producing Chinese hamster ovary (CHO) cell line, we developed cell line engineering approaches based on the ceramide transfer protein (CERT) and X-box binding protein 1 (XBP1) genes. For this purpose, CERT S132A, a mutant form of CERT that is resistant to phosphorylation, and XBP1s were overexpressed in a recombinant t-PA-producing CHO cell line. Overexpression of CERT S132A increased the specific productivity of t-PA-producing CHO cells up to 35%. In contrast, the heterologous expression of XBP1s did not affect the t-PA expression rate. Our results suggest that CERT-S132A-based secretion engineering could be an effective strategy for enhancing recombinant t-PA production in CHO cells.

The Effect of high Carbohydrate and Cellulose Diets on the Growth of Albino Rate (High Carbohydrate 와 Cellulose Diet가 흰쥐의 체내대사에 미치는 영향 ( I ))

  • Yu, Choon-Hie;Kim, Sook-He
    • Journal of Nutrition and Health
    • /
    • v.9 no.2
    • /
    • pp.24-39
    • /
    • 1976
  • The present study was undertaken to investigate the metabolic problems of high carbohydrate and cellulose diets of Korean. Forty males and same number of females of Albino rats, aged $45{\pm}5$days were divided into 95% high carbohydrate (H. CHO)group, 83.8% medium carbohydrate (M. CHO)group, 50% low carbohydrate (L. CHO) group and standard (Stand). group containing 72.2% sugar. Each group was divided into two again-1.55% cellulose group and non-cellulose group, 10 rats each of eight groups in both sexes. Cellulose was added to each of non-cellulose diets in the forms of spinach powder and rice bran. After 14 weeks the rats were sacrificed for chemical analysis and the results were elucidated as follows. (1) H. CHO+Cell. group showed the lowest value in body weight gained and shrinkage of almost all organs, in contrast with this group the L.CHO group showed higher body weight gained than Stand. group. M. CHO+Cell, group showed much the same body weight gained curve as Stand. group. (2) It was observed that cellulose group showed lower F.E.R and P.E.R value than non-cellulose group comparatively. (3) Total nitrogen retention and retention rate were decreaced in H. CHP groups compared with M. CHO or L. CHO groups. (4) The amount of feces was increased due to addition of cellulose to experimental diets and in accordance with the increasing total fecal excretion of nitrogen and glucose was also increased, especially noticeable in fecal glucose excretion. (5) It was noteworthy that serum cholesterol level was decreased due to addition of cellulose in H. CHO group and L. CHO group. (6) M. CHO+Cell. group was designed to reflect the average survey data of Korean diets and there was no significant differences on body weight gained, F.E.R, P.E.R, total nitrogen retention and hematology between M. CHO+Cell. and Stand. group. Total glucose excretion was increased due to dietary cellulose in M. CHO+Cell. group, but it seemed to be no metabolic problems in this group.

  • PDF

Effect of Iron on Adherence and Cytotoxicity of Entamoeba histolytica to CHO Cell Monolayers

  • Lee, Jong-Weon;Park, Soon-Jung;Yong, Tai-Soon
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.1
    • /
    • pp.37-40
    • /
    • 2008
  • Iron is an essential element for almost all living organisms. The possible role of iron for growth, adherence and cytotoxicity of Entamoeba histolytica was evaluated in this study. The absence of iron from TYI-S-33 medium stopped amebic growth in vitro. However, iron concentrations in the culture media of 21.4-285.6 ${\mu}M$ did not affect the growth of the amebae. Although growth was not retarded at these concentrations, the adhesive abilities of E. histolytica and their cytotoxicities to CHO cell monolayer were correlated with iron concentration. Amebic adhesion to CHO cell monolayers was significantly reduced by low-iron ($24.6{\pm}2.1%$) compared with $62.7{\pm}2.8\;and\;63.1{\pm}1.4%$ of amebae grown in a normal-iron and high-iron media, respectively. E. histolytica cultured in the normal- and high-iron media destroyed $69.1{\pm}4.3%\;and\;72.6{\pm}5.7%$ of cultured CHO cell monolayers, but amebae grown in the low-iron medium showed a significantly reduced level of cytotoxicity to CHO cells ($2.8{\pm}0.2%$). Addition of divalent cations other than iron to amebic trophozoites grown in the low-iron medium failed to restore levels of the cytotoxicity. However, when E. histolytica grown in low-iron medium were transferred to normal-iron medium, the amebae showed completely restored cytotoxicity within 7 days. The result suggests that iron is an important factor in the adherence and cytotoxicity of E. histolytica to CHO cell monolayer.