• Title/Summary/Keyword: CHIRPS

Search Result 20, Processing Time 0.051 seconds

Assessment and Validation of New Global Grid-based CHIRPS Satellite Rainfall Products Over Korea (전지구 격자형 CHIRPS 위성 강우자료의 한반도 적용성 분석)

  • Jeon, Min-Gi;Nam, Won-Ho;Mun, Young-Sik;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.39-52
    • /
    • 2020
  • A high quality, long-term, high-resolution precipitation dataset is an essential in climate analyses and global water cycles. Rainfall data from station observations are inadequate over many parts of the world, especially North Korea, due to non-existent observation networks, or limited reporting of gauge observations. As a result, satellite-based rainfall estimates have been used as an alternative as a supplement to station observations. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and global coverage. CHIRPS is a global precipitation product and is made available at daily to seasonal time scales with a spatial resolution of 0.05° and a 1981 to near real-time period of record. In this study, we analyze the applicability of CHIRPS data on the Korean Peninsula by supplementing the lack of precipitation data of North Korea. We compared the daily precipitation estimates from CHIRPS with 81 rain gauges across Korea using several statistical metrics in the long-term period of 1981-2017. To summarize the results, the CHIRPS product for the Korean Peninsula was shown an acceptable performance when it is used for hydrological applications based on monthly rainfall amounts. Overall, this study concludes that CHIRPS can be a valuable complement to gauge precipitation data for estimating precipitation and climate, hydrological application, for example, drought monitoring in this region.

Calling song and phonotactic selectivity in the field cricket Teleogryllus emma (Orthoptera: Gryllidae)

  • Jang, Soo-Jin;An, Hyon-Gyong;Jang, Yi-Kweon
    • Journal of Ecology and Environment
    • /
    • v.33 no.4
    • /
    • pp.307-315
    • /
    • 2010
  • Males of the field cricket Teleogryllus emma produce calling songs that are attractive to receptive females. The calling songs of T. emma consist of two components, the long chirp that is composed of up to 12 single pulses, followed by a variable number of short chirps. Based on the analysis of coefficient of variation (CV), temporal characters of the long chirp were less variable than those of the short chirps in male calling songs. To test for phonotactic selectivity of females, we conducted a single-stimulus playback experiment in which five stimuli (standard, long chirp only, long chirp augmented, short chirps only, and short chirps augmented) were used. The standard stimulus included both long and short chirps whose characteristics were derived from the calling songs of field populations. Results of the playback experiment showed that female crickets oriented more frequently toward the stimuli that included the long chirp (standard, long chirp only, and long chirp augmented stimuli) than toward the stimuli lacking the long chirp (short chirps only and short chirps augmented stimuli), indicating that the long chirp in the calling songs was required to elicit positive phonotaxis in the female crickets. The result of CV analysis of the male calling songs and the findings of the female phonotaxis experiment suggested that the long chirp of calling songs may play a role in species recognition in T. emma.

Application of Meteorological Drought Index using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) Based on Global Satellite-Assisted Precipitation Products in Korea (위성기반 Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)를 활용한 한반도 지역의 기상학적 가뭄지수 적용)

  • Mun, Young-Sik;Nam, Won-Ho;Jeon, Min-Gi;Kim, Taegon;Hong, Eun-Mi;Hayes, Michael J.;Tsegaye, Tadesse
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.1-11
    • /
    • 2019
  • Remote sensing products have long been used to monitor and forecast natural disasters. Satellite-derived rainfall products are becoming more accurate as space and time resolution improve, and are widely used in areas where measurement is difficult because of the periodic accumulation of images in large areas. In the case of North Korea, there is a limit to the estimation of precipitation for unmeasured areas due to the limited accessibility and quality of statistical data. CHIRPS (Climate Hazards Group InfraRed Precipitation with Stations) is global satellite-derived rainfall data of 0.05 degree grid resolution. It has been available since 1981 from USAID (U.S. Agency for International Development), NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration). This study evaluates the applicability of CHIRPS rainfall products for South Korea and North Korea by comparing CHIRPS data with ground observation data, and analyzing temporal and spatial drought trends using the Standardized Precipitation Index (SPI), a meteorological drought index available through CHIRPS. The results indicate that the data set performed well in assessing drought years (1994, 2000, 2015 and 2017). Overall, this study concludes that CHIRPS is a valuable tool for using data to estimate precipitation and drought monitoring in Korea.

Verifying Applicability of Multi-Timescale Rainfall Data from CHIRPS Satellite (다중시간 규모의 CHIRPS 위성 강우자료에 대한 활용성 검증)

  • Minseok Kim;Kyunghun Kim;Seong Cheol Shin;Soojun Kim;Hung Soo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.192-192
    • /
    • 2023
  • 우량계는 강우 자료를 수집하는 전통적인 방법 중 하나로, 연속적이고 직접적인 설치가 가능하다. 하지만 지형적 특성에 영향을 받아 강우량을 과소 측정하는 문제점이 있다. 이러한 문제를 해결하기 위해 국지적인 호우, 강우 이동 및 강우 상황 등을 파악할 수 있는 레이더를 이용한 강우 측정이 활용된다. 하지만 레이더 기반 측정 또한 우량계와 마찬가지로 과소 측정하는 문제점이 있다. 측정 한계를 극복하기 위해 최근에는 위성 기반 강우 자료를 사용하고 있다. 위성 기반의 강우 자료는 측정이 어려운 장소에서도 강우량의 수집이 가능하며, 지표 변화를 관측하여 강우 측정의 정확도를 높일 수 있다. 고화질 위성 자료인 CHIRPS (Climate Hazards Group InfraRed Precipitation with Stations) 자료는 미국 국제개발처, 항공우주국, 해양 대기청의 지원으로 1980년부터 현재까지 전 지구적 (50°S-50°N, 180°E-180°W) 0.05° × 0.05°의 해상도를 가진 강우량 데이터를 개발하였다. 본 연구에서는 전국 54개 ASOS (Automated Synpotic Observing System)에서 관측한 월 단위 및 일 단위 강우 자료를 기준으로 CHIRPS 강우 자료를 비교하였다. 또한, 다른 위성 강우 자료들 (APHRODITE (Asian Precipitation Highly Resolved Observation Data Integration Towards Evaluation), CMORPH (Climate Prediction Cneter morphing method))과도 비교하여 국내 적용성을 확인하였다. 강우 자료의 정확도를 비교하기 위해서 Box-plot, RMSE (Root Mean Squared Error) 등을 산정하였으며, 강우 발생 일을 비교하고자 오차 행렬을 활용하였다. 비교 결과를 통해서 CHIRPS 강우 자료가 다른 위성 강우 자료들에 비해서 국내 적용성이 높은 것을 확인할 수 있었으며, 추후 국내 수문학 연구에서 기초자료로서 활용될 수 있을 것으로 판단된다.

  • PDF

Intercomparison of Satellite-based Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) Gridded Dataset and Rain Gauge Data over Korea (Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)와 한반도 지상관측 강수량 자료의 비교 평가)

  • Jeon, Min-Gi;Nam, Won-Ho;Mun, Young-Sik;Kim, Taegon;Hong, Eun-Mi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.197-201
    • /
    • 2018
  • 인공위성 기반의 원격탐사자료는 홍수, 가뭄 등 자연재해에 대한 모니터링 및 예측에 활용되어 왔으며, 특히 인공위성을 이용한 광역적 강수량 추정 자료는 지형적 제약을 받는 지상관측자료와 비교하여 시공간적으로 연속적이고 균질한 강수량 자료 취득이 가능하다는 장점이 있다. 우리나라의 경우 상대적으로 조밀한 지상관측망이 구축되어 있어 공간적으로 상세한 강수량 정보를 생산할 수 있는 여건을 갖추고 있지만, 북한 지역의 경우 기상, 수문, 통계자료에 관한 자료의 접근 및 품질의 제한성으로 인해 미계측 지역에 대한 강수량의 추정에 한계가 있다. CHIRPS (Climate Hazards Group InfraRed Precipitation with Stations) 데이터는 1999년부터 미국국제개발처 (U.S. Agency for International Development, USAID), 미국항공우주국 (National Aeronautics and Space Administration, NASA), 미국해양대기청 (National Oceanic and Atmospheric Administration, NOAA)의 지원으로 개발된 전지구 강우데이터 자료이다. CHIRPS는 1981년부터 현재까지 전지구 강우자료를 0.05도 격자 해상도로 제공하고 있으며, 강수량의 추세 분석 및 가뭄 모니터링을 위해 활용되고 있다. 본 연구에서는 CHG (Climate Hazards Group)에서 제공하고 있는 인공위성을 이용한 광역적 강수량 추정 자료인 CHIRPS와 남한 및 북한의 지상관측 강수량 자료와의 비교를 통해 위성으로부터 유도된 격자 강수량자료의 정확도 및 지역적인 강수추정의 불확실성을 평가하고, 수자원 및 재해 분야 이용 가능성을 검토하고자 한다.

  • PDF

A Novel Signaling Method using Multiple Chirps in UWB Radio (UWB 대역에서 Multiple Chirp 을 이용한 새로운 시그널링 방법)

  • Kim, Yeong-Sam;Yoon, Sang-Hun;Chong, Jong-Wha;Lee, Kyung-Kuk
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.127-128
    • /
    • 2006
  • In this paper, we propose a novel signaling method using chirp signals in UWB radio with satisfaction of FCC regulation. Chirp signals have been used in many ranging systems such as radar because of its good correlation properties. Because it is important to use broader signal bandwidth in order to get higher precision of the ranging, according to the Cramer-Rao Lower Bound, UWB radio is extremely good as the ranging systems. But, it is very difficult to apply existing chirp signals to UWB, because FCC regulates that the systems operating in UWB radio must occupy signal bandwidth more than 500MHz on the condition of stopping the frequency sweeping. So, we propose multiple chirp signals which can satisfy the regulation of FCC while maintaining chirp signal's properties. The multiple chirp signals which are composed of the sub-chirps modulated by sub-carriers can expand the signal bandwidth with the same principle of OFDM systems. The simulation results show that the BER performance of the proposed multiple chirp signals is identical to that of conventional OFDM when it is applied to data communication, and that the correlation properties of the proposed signals are almost the same with properties as those of single chirp signals whose sweeping bandwidth is the same value with the proposed one.

  • PDF

Application of Convolutional Neural Networks (CNN) for Bias Correction of Satellite Precipitation Products (SPPs) in the Amazon River Basin

  • Alena Gonzalez Bevacqua;Xuan-Hien Le;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.159-159
    • /
    • 2023
  • The Amazon River basin is one of the largest basins in the world, and its ecosystem is vital for biodiversity, hydrology, and climate regulation. Thus, understanding the hydrometeorological process is essential to the maintenance of the Amazon River basin. However, it is still tricky to monitor the Amazon River basin because of its size and the low density of the monitoring gauge network. To solve those issues, remote sensing products have been largely used. Yet, those products have some limitations. Therefore, this study aims to do bias corrections to improve the accuracy of Satellite Precipitation Products (SPPs) in the Amazon River basin. We use 331 rainfall stations for the observed data and two daily satellite precipitation gridded datasets (CHIRPS, TRMM). Due to the limitation of the observed data, the period of analysis was set from 1st January 1990 to 31st December 2010. The observed data were interpolated to have the same resolution as the SPPs data using the IDW method. For bias correction, we use convolution neural networks (CNN) combined with an autoencoder architecture (ConvAE). To evaluate the bias correction performance, we used some statistical indicators such as NSE, RMSE, and MAD. Hence, those results can increase the quality of precipitation data in the Amazon River basin, improving its monitoring and management.

  • PDF

Evaluation of Precipitation Variability using Grid-based Rainfall Data Based on Satellite Image (위성영상 기반 격자형 강우자료를 활용한 강수량 변동성 평가)

  • Park, Gwang-Su;Nam, Won-Ho;Mun, Young-Sik;Yang, Mi-Hye;Lee, Hee-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.330-330
    • /
    • 2022
  • 우리나라에서 발생하는 기상 재해 현상은 주로 태풍, 집중호우, 장마 등 인명 및 경제적인 피해가 크며, 단기간에 국지적으로 나타난다. 현재 재해 감시 및 예보는 주로 종관기상관측체계를 이용하고 있다. 하지만, 우리나라의 복잡한 지형, 인구 밀집 지형, 관측 시기가 일정하지 않은 지형과 같은 조건에서 미계측 자료 및 지역이 다수 존재 때문에 강수의 공간 분포와 강도에 대한 정밀한 정보를 제공하지 못하는 실정이다. 최근 광범위한 관측영역과 공간 분해능의 개선, 자료추출 알고리즘의 개발로 전세계적으로 위성영상 기반 기상관측 자료의 활용성이 증대되고 있다. 본 연구에서는 한반도 지역의 지상 관측데이터와 전지구 격자형 위성 강우자료를 비교하여 한반도의 적용성을 분석하고자 한다. 다양한 위성영상 기반 기상자료인 Climate Hazards Groups InfraRed Precipitation with Station (CHIRPS), Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Global Precipitation Climatology Centre (GPCC), Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) 4개의 강우위성영상을 수집하여, 1991년부터 2020년까지 30년 데이터를 활용하였다. 강수량 변동성 비교를 위하여 기상청의 종관기상관측장비 (Automated Synoptic Observation System, ASOS), 자동기상관측시설 (Automatic Weather System, AWS) 데이터와 상관 분석을 수행하고, 강우위성영상의 국내 적합성을 판단하고자 한다.

  • PDF

Evaluation and Comparison of Meteorological Drought Index using Multi-satellite Based Precipitation Products in East Asia (다중 위성영상 기반 강우자료를 활용한 동아시아 지역의 기상학적 가뭄지수 비교 분석)

  • Mun, Young-Sik;Nam, Won-Ho;Kim, Taegon;Hong, Eun-Mi;Sur, Chanyang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.83-93
    • /
    • 2020
  • East Asia, which includes China, Japan, Korea, and Mongolia, is highly impacted by hydroclimate extremes such drought, flood, and typhoon recent year. In 2017, more than 18.5 million hectares of crops have been damaged in China, and Korea has suffered economic losses as a result of severe drought. Satellite-derived rainfall products are becoming more accurate as space and time resolution become increasingly higher, and provide an alternative means of estimating ground-based rainfall. In this study, we verified the availability of rainfall products by comparing widely used satellite images such as Climate Hazards Groups InfraRed Precipitation with Station (CHIRPS), Global Precipitation Climatology Centre (GPCC), and Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) with ground stations in East Asia. Also, the satellite-based rainfall products were used to calculate the Standardized Precipitation Index (SPI). The temporal resolution is based on monthly images and compared with the past 30 years data from 1989 to 2018. The comparison between rainfall data based on each satellite image products and the data from weather station-based weather data was shown by the coefficient of determination and showed more than 0.9. Each satellite-based rainfall data was used for each grid and applied to East Asia and South Korea. As a result of SPI analysis, the RMSE values of CHIRPS were 0.57, 0.53 and 0.47, and the MAE values of 0.46, 0.43 and 0.37 were better than other satellite products. This satellite-derived rainfall estimates offers important advantages in terms of spatial coverage, timeliness and cost efficiency compared to analysis for drought assessment with ground stations.

A novel framework for correcting satellite-based precipitation products in Mekong river basin with discontinuous observed data

  • Xuan-Hien Le;Giang V. Nguyen;Sungho Jung;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.173-173
    • /
    • 2023
  • The Mekong River Basin (MRB) is a crucial watershed in Asia, impacting over 60 million people across six developing nations. Accurate satellite-based precipitation products (SPPs) are essential for effective hydrological and watershed management in this region. However, the performance of SPPs has been varied and limited. The APHRODITE product, a unique gauge-based dataset for MRB, is widely used but is only available until 2015. In this study, we present a novel framework for correcting SPPs in the MRB by employing a deep learning approach that combines convolutional neural networks and encoder-decoder architecture to address pixel-by-pixel bias and enhance accuracy. The DLF was applied to four widely used SPPs (TRMM, CMORPH, CHIRPS, and PERSIANN-CDR) in MRB. For the original SPPs, the TRMM product outperformed the other SPPs. Results revealed that the DLF effectively bridged the spatial-temporal gap between the SPPs and the gauge-based dataset (APHRODITE). Among the four corrected products, ADJ-TRMM demonstrated the best performance, followed by ADJ-CDR, ADJ-CHIRPS, and ADJ-CMORPH. The DLF offered a robust and adaptable solution for bias correction in the MRB and beyond, capable of detecting intricate patterns and learning from data to make appropriate adjustments. With the discontinuation of the APHRODITE product, DLF represents a promising solution for generating a more current and reliable dataset for MRB research. This research showcased the potential of deep learning-based methods for improving the accuracy of SPPs, particularly in regions like the MRB, where gauge-based datasets are limited or discontinued.

  • PDF