• Title/Summary/Keyword: CHANGE OF TEMPERATURE

Search Result 10,052, Processing Time 0.04 seconds

LARGE-SCALE VERSUS EDDY EFFECTS CONTROLLING THE INTERANNUAL VARIATION OF MIXED LAYER TEMPERATURE OVER THE NINO3 REGION

  • Kim, Seung-Bum;Lee, Tong;Fukumori, Ichiro
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.21-24
    • /
    • 2006
  • Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the NINO3 domain ($150-90^{\circ}W$, $5^{\circ}N-5^{\circ}S$) are studied using an ocean data assimilation product that covers the period of 1993 to 2003. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed mostly by Ekman current advecting large-scale temperature anomalies though the southern boundary of the domain. Unlike many previous studies, we explicitly evaluate the subsurface processes that consist of vertical mixing and entrainment. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to temporal change in ML depth is negligible comparing to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in wind-driven upwelling and temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Ni? cooling events. When the advective tendencies are evaluated by spatially averaging the conventional local advective tendencies of temperature, the apparent effects of currents with spatial scales smaller than the domain (such as TIWs) become very important as they redistribute heat within the NINO3 domain. However, such internal redistribution of heat does not represent external processes that control the domain-averaged MLT.

  • PDF

Impact of Elevated Temperature in Growing Season on Growth and Bulb Development of Extremely Early-Maturing Onion (Allium cepa L. cv. Singsingball) (생육기 온도상승이 극조생 양파의 생육 및 구 비대에 미치는 영향)

  • Song, Eun Young;Moon, Kyung Hwan;Wi, Seung Hwan;Kim, Chun Hwan;Lim, Chan Kyu;Oh, Soonja;Son, In Chang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.223-231
    • /
    • 2017
  • This study was conducted to determine the impact of elevated temperature based on climate change scenario on growth and bulb quality of extremely early-maturing onion (Allium cepa L. cv. Singsingball) in the temperature gradient tunnels. There were treated with 3 groups, one is a control group (ambient temperature, mean temperature at $9.8^{\circ}C$), another ambient temperature $+2^{\circ}C$ (mean temperature at $12.0^{\circ}C$), and the other ambient temperature $+5^{\circ}C$ (mean temperature at $14.3^{\circ}C$). Compared with the control, plant height, neck diameter, leaf area, top fresh weight and dry weight were significantly increased at ambient $+2^{\circ}C$ temperature. Bulb diameter and bulb weight was highest at ambient $+2^{\circ}C$ temperature (mean temperature at $12.0^{\circ}C$) during the growth period. Bulb/neck diameter ratio, over 2.0 a good indicator of development of bulb, increased rapidly at ambient $+2^{\circ}C$ temperature. This result suggests that extremely early-maturing onion (Allium cepa L. cv. Singsingball) could maintain the higher productivity and bulb quality at ambient $+2^{\circ}C$ temperature. On the contrary, $5^{\circ}C$ higher than atmospheric temperature shows negative effects on yields under a future climate change scenario.

An Experimental Study on the Development and Possible Solution of Thermal Runaway Model of Electronic Moxibustion with System Error (전자뜸의 시스템 오류에 의한 열폭주 모델 구현 및 해결 방법에 관한 실험적 연구)

  • Lee, Byung Wook;Oh, Yong Taek;Jang, Hansol;Choi, Seong-Kyeong;Jo, Hyo Rim;Sung, Won-Suk;Kim, Eun-Jung
    • Korean Journal of Acupuncture
    • /
    • v.38 no.4
    • /
    • pp.282-289
    • /
    • 2021
  • Objectives : The purpose of this study is to construct a model of the possible thermal runaway of electronic moxibustion and to implement an appropriate risk management method. Methods : To reproduce the system error situation of the electronic moxibustion circuit equipped with microcontroller unit, temperature sensor and heater, a code was set to disable the signal input to temperature sensor and maintain "high" heating signal to heater. The temperature change of electronic moxibustion was compared between 3 types of heater module; module 1 consisting of a combination of heater+0 ohm+0 ohm resistance, module 2 consisting of a combination of heater+Polymeric Positive Temperature Coefficient (PPTC)+0 ohm resistance, and module 3 consisting of a combination of heater+PPTC+10 ohm resistance. The temperature change was measured using a polydimethylsiloxane (PDMS) silicone phantom. After maintaining surface temperature of the phantom at 31~32℃ for 20 seconds, electronic moxibustion was applied. After operating electronic moxibustion, the temperature change was measured for 660 seconds on the surface and 900 seconds at 2 mm depth. Results : Regardless of the module type, the time-dependent change in temperature showed a rapid rise followed by a gentle curve, and a sharp drop in temperature after reaching the maximum temperature about 10 minutes after the switching the moxibustion on. Temperature measured at the depth of 2 mm below the surface increased slower and to a lesser extent. Module 1 reached highest peak temperature with largest change of temperature at both depths followed by module 2, and 3. Conclusions : Through the combination of PPTC+resistance with the heater of electronic moxibustion, it is possible to limit the rise in temperature even with the software error. Thus, this setting can be used as an independent safety measure for the electronic moxibustion control unit.

The Study on Cooling Characterics of TMA Clathrate with Ethanol (에탄올을 첨가한 TMA 포접화합물의 냉각특성에 대한 연구)

  • 김창오;김진흥;정낙규;김석현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.634-640
    • /
    • 2002
  • The purpose of this study is to investigate the propriety of TMA clathrate as a cold storage medium. Particularly, this is to examine the extent of subcooling improvement when the additives is added to the TMA clathrate, because water used for cold storage ma terial has low phase change temperature and subcooling. This study has been analyzed and compared pure water with TMA 30 wt% clathrate how phase change temperature, subcooling and specific heat in the various concentrations are changed. This results prove low phase change temperature and subcooling control effect when the ethanol is added to the TMA 30 wt% clathrate than the TMA 30 wt% clathrate. In addition, it results low specific heat when there is added to the TMA 30 wt% clathrate over 0.5 wt% ethanol in the cold heat source temperature under $-7^{\circ}C$. The other side, it results high specific heat when the ethanol is added in it at the cold heat source temperature under $-5^{\circ}C$. Therefore, it is found that the additive must be controlled by available solution limit and study for new additive must be lasted to know its effect.

Estimation of Energy Use in Residential and Commercial Sectors Attributable to Future Climate Change (미래 기후변화에 따른 가정 및 상업 부문 에너지수요 변화 추정)

  • Jeong, Jee-Hoon;Kim, Joo-Hong;Kim, Baek-Min;Kim, Jae-Jin;Yoo, Jin-Ho;Oh, Jong-Ryul
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.515-522
    • /
    • 2014
  • In this study it is attempted to estimate the possible change in energy use for residential and commercial sector in Korea under a future climate change senario. Based on the national energy use and observed temperature data during the period 1991~2010, the optimal base temperature for determining heating and cooling degree days (HDD and CDD) is calculated. Then, net changes in fossil fuel and electricity uses that are statistically linked with a temperature variation are quantified through regression analyses of HDD and CDD against the energy use. Finally, the future projection of energy use is estimated by applying the regression model and future temperature projections by the CMIP5 results under the RCP8.5 scenario. The results indicate that, overall, the net annual energy use will decrease mostly due to a large decrease in the fossil fuel use for heating. However, a clear seasonal contrast in energy use is anticipated in the electricity use; there will be an increase in a warm-season demand for cooling but a decrease in a cold-season demand for heating.

Change in Surface Temperature of Woodceramics Manufactured by Sawdust Boards - Effect of the Rate of Resin Impregnation and Burning Temperature - (톱밥보드로 제조된 우드세라믹의 표면온도 변화 - 수지 함침율과 소성온도의 영향 -)

  • 오승원;박금희;변희섭
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.1
    • /
    • pp.24-29
    • /
    • 2003
  • Using woodceramics made from sawdust board of Larix leptolepis thinning logs, change in surface temperature were investigated, by the rate of resin impregnation and burning temperature. As the surface temperature of silicon rubber heater was going up, that of woodceramics also increase rapidly. Woodceramics made from under the condition of the rate of resin impregnation 70-80% and burning temperature 800-$1000^{\circ}C$, were higher than that of surface temperature. Also, it was found that woodceramics maintained heat for a long time because the descending velocity of their surface temperature was lower than that of the heater.

  • PDF

Effects of Resistivity Variation in a Very Low Temperature on the Characteristics of Induction Motors

  • Kim, Beom Jin;Kim, Jin Sung;Park, Gwan Soo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • This paper presents design of induction motor in very low temperature for LNG main cargo pump and comparison of two motors. One is the motor for using in room temperature and another is the motor for using very low temperature. This paper designs with Equivalent circuit Method and uses Finite Element Method to analysis. The motor for very low temperature considers variation of coil resistivity due to temperature change and compare torque characteristic with the motor for room temperature. Design element of motor for very low temperature considers resistivity variation following temperature change on going through this paper. The result shows that two types of motors are almost same torque curve characteristic even though they are not the same environment.

A Study on the Distribution of Friction Heat generated by CMP Process (CMP 공정에서 발생하는 연마온도 분포에 관한 연구)

  • 김형재;권대희;정해도;이용숙;신영재
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.42-49
    • /
    • 2003
  • In this paper, we provide the results of polishing temperature distribution by way of infrared ray measurement system as well as polishing resistance, which can be interpreted as tribological aspects of CMP, using force measurement system. The results include the trend of polishing temperature, its distribution profile and temperature change during polishing. The results indicate that temperature affects greatly to the removal rate. Polishing temperature increases gradually and reaches steady state temperature and the period of temperature change occurs first tens of seconds. Furthermore, the friction force also varies as the same pattern with polishing temperature from high friction to low. These results suggest that the first period of the whole polishing time greatly affects the nonuniformity of removal rate.

Temperature-dependent Structural and Magnetic Properties of Diamagnetic $HgI_2$

  • Park, C.I.;Jin, Zhenlan;Hwang, I.H.;Yeo, S.M.;Han, S.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.291.1-291.1
    • /
    • 2013
  • We examined the temperature-dependent structural and magnetic properties of HgI2 in the temperature range of 300~400 K. HgI2 is a diamagnetic material and can be used for X-ray or γ-ray detectors. DCmagnetization measurements on HgI2 showed that there is a small but distinguishable change in its diamagnetic properties near 375 K. The magnetic property change is not expected because Hg and I are known as nonmagnetic elements. X-ray diffraction (XRD) measurements revealed a structural transition in the temperature of 350~400 K. Temperature-dependent x-ray absorption fine structure (XAFS) demonstrated that the chemical valence states of both Hg and I did not changed in the temperature range of 300~400 K. However, XAFS revealed that the bond-length disorder was slightly increased in the temperature range, particularly, near Hg atoms. The structural changes of HgI2 are likely related to its diamagnetic property change. We will discuss the relation between the diamagnetic properties and local structural properties of HgI2 in detail.

  • PDF

Characterization of Thermal Expansion Coefficients of Carbon/Epoxy Composite for Temperature Variation (탄소섬유 복합재료의 온도변화에 대한 열팽창계수 특성 변화 규명)

  • 김주식;윤광준
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.1-7
    • /
    • 1999
  • The change of the coefficients of thermal expansion(CTE) of Carbon/Epoxy was investigated for the temperature variation and a prediction model for the change of CTE was proposed. Elastic properties and CTEs in the principal material directions were measured in the range of room temperature to cure temperature and characterized as functions of temperature. By applying the characterized properties to the classical lamination theory, a computational method to predict the change of CTEs of a general laminate for temperature variation was proposed. the coefficients of thermal expansion of laminates with various stacking sequences were measured and compared with those predicted. Good agreements between the predicted results and the experimental data show that the c hanges of CTEs of a general laminate for temperature variation can be predicted well by using the proposed method.

  • PDF