• Title/Summary/Keyword: CH$_4$ gas

Search Result 1,166, Processing Time 0.027 seconds

A Study on the Reaction Optimization for the Utilization of CO2 and CH4 from Bio-gas (바이오가스에서 CO2/CH4 활용에 관한 반응최적화 연구)

  • KHO, DONGHYUN;CHO, WOOKSANG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.554-561
    • /
    • 2016
  • Depending on the Bio-gas sources, main component gases of $CH_4$ and $CO_2$ are shown to be variously present in amounts. For the anaerobic digester, The concentration of $CH_4$ and $CO_2$ in the gases are 60~70 and 30~35 vol%. For the landfill gas, $CH_4$ and $CO_2$ are 40~60 and 40~60 vol%. For the food wastes, $CH_4$ and $CO_2$ are 60~80 and 20~40 vol%, respectively. In this study, maximum conversion rates of $CO_2$ were obtained from the variety of concentrations of $CH_4$ and $CO_2$ by the catalysts of reforming reactions. Moreover, in order to get maximum producing amount of synthetic gas, experimental studies were performed to optimize the reaction variables. On the basis of $CH_4$, 243 ml, R [$CH_4/(O2+CO_2)$] value were varied from 0.8 to 1.35, in the study of $CH_4$ and $CO_2$ reforming reactions. It was shown that the optimal results were obtained for 1.35 of R value. And also, at $850^{\circ}C$ and 1 atm, the production rate of synthetic gas was 90% and the conversion rates of $CH_4$ and $CO_2$ were higher than 99% and 90%, respectively.

Characteristics and Preparation of Gas Sensor Using Nano Indium Coated ZnO:In (나노 Indium을 부착한 ZnO:In 가스센서의 제작 및 특성)

  • Jung, Jong-Hun;Yu, Yun-Sik;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.486-490
    • /
    • 2011
  • Nano-indium-coated ZnO:In thick films were prepared by a hydrothermal method. ZnO:In gas sensors were fabricated by a screen printing method on alumina substrates. The gas sensing properties of the gas sensors were investigated for hydrocarbon gas. The effects of the indium concentration of the ZnO:In gas sensors on the structural and morphological properties were investigated by X-ray diffraction and scanning electron microscopy. XRD patterns revealed that the ZnO:In with wurtzite structure was grown with (1 0 0), (0 0 2), and (1 0 1) peaks. The quantity of In coating on the ZnO surface increased with increasing In concentration. The sensitivity of the ZnO:In sensors was measured for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity to $CH_4$ gas and $CH_3CH_2CH_3$ gas of the ZnO:In sensors was observed at the In 6 wt%. The response and recovery times of the 6 wt% indiumcoated ZnO:In gas sensors were 19 s and 12 s, respectively.

Etch characteristics of MTJ materials using in CH4/N2O or CH3OH gas (CH4/N2O 및 CH3OH gas를 이용한 Magnetic Tunnel Junction 물질의 식각특성에 관한 연구)

  • Yang, Gyeong-Chae;Jeon, Min-Hwan;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.14-14
    • /
    • 2014
  • STT-MRAM의 구성물질인 magnetic tunnel junction의 효과적인 식각을 위하여 다양한 가스 조합을 연구하였다. 그 결과 $CH_4/N_2O$ gas 조합보다는 $CH_3OH$ gas 가 보다 향상된 식각 특성을 나타내었고 pulse duty ratio 변화와 기판온도 변화가 식각특성 향상에 영향을 주었음을 알 수 있었다.

  • PDF

Tuning Behavior of (Cyclic Amines + Methane) Clathrate Hydrates and Their Application to Gas Storage (고리형 아민이 포함된 메탄 하이드레이트의 튜닝과 가스 저장 연구)

  • Ki Hun Park;Dong Hyun Kim;Minjun Cha
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.394-400
    • /
    • 2023
  • In this study, the tuning phenomena, gas storage capacity, and thermal expansion behaviors of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were investigated for the potential applications of clathrate hydrates to gas storage. To understand the tuning behaviors of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates, 13C solid-state NMR spectroscopy was used, and the results confirmed that maximum tuning factors for the binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were achieved at 0.5 mol% and 1.0 mol% of guest concentration, respectively. The gas storage capacity of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were also checked, and the results showed the CH4 capacity of our hydrate systems was superior to that of binary (tetrahydrofuran + CH4) and (cyclopentane + CH4) clathrate hydrates. The synchrotron diffraction patterns of these hydrates collected at 100, 150, 200, and 250 K confirmed the formation of a cubic Fd-3m hydrate. In addition, the lattice constant of clathrate hydrates with cyclopentylamine and methane were larger than that with cyclopropylamine and methane due to the effects of molecular size and shape.

OPTICAL EMISSION SPECTROSCOPY OF Ch$_4$/Ar/H$_2$ GAS DISCHARGES IN RF PLASMA CVD OF HYDROGENATED AMORPHOUS CARBON FILMS

  • Lee, Sung-Soo;Osamu Takai
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.648-653
    • /
    • 1996
  • Hydrogenated amorphous carbon(a-C:H) films are prepared by rf plasma CVD in a $CH_4$ source gas system diluted with Ar of $H_2$. The spectra of emissive and reactive species in the plasma are detected using in stiu optical emission spectroscopy. Inaddition, the relationship between the film properties which can be varied by the deposition parameters and the Raman spectra is studied. In the $CH_4/H_2$ gas system, the emission intensities of CH and $H \tau$ decrease and those of $H \alpha$, $H \beta$, $C_2$ and Ar increase with increasing $H_2$ concentration, The formation of $C_2$ and CH in the $CH_4/Ar/H_2$ gas system is greatly suppressed by hydrogen addition and the excess of hydrogen addition is found to form graphite structure. The $C_2$ formation in the gas phase enhances a-C:H film formation.

  • PDF

Conversion Characteristics of CH4 and CO2 in an Atmospheric Pressure Plasma Reactor (대기압 플라즈마 반응기에서의 CH4와 CO2의 전환처리 특성)

  • Kim, Tae Kyung;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.653-657
    • /
    • 2011
  • Conversion characteristics of $CH_4$ and $CO_2$ was studied using an atmospheric pressure plasma for the preparation of synthesis gas composed of $H_2$ and CO. The effects of delivered power, total gas flow rate, and gas residence time in the reactor on the conversion of $CH_4$ and $CO_2$ were evaluated in a plasma reactor with the type of dielectric barrier discharge. The increase of reactor temperature did not affect on the increase of conversion if the temperature does not reach to the appropriate level. The conversion of $CH_4$ and $CO_2$ largely increased with increasing the delivered power. As the $CH_4/CO_2$ ratio increased, the $CH_4$ conversion decreased, whereas the $CO_2$ conversion increased. Generally, the $CH_4$ convesion was higher than the $CO_2$ conversion through the variation of the process parameters.

An Analysis on the Cryogenic Distillation Process for $^{13}CH_4$ Separation from LNG by Short-Cut Method (Short-Cut 방법에 의한 LNG 성분에서 $^{13}CH_4$초저온 증류 공정 분석)

  • Lee Youngchul;Song Taekyoong;Cho ByungHak;Baek Youngsoon;Song KyuMin
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.22-27
    • /
    • 2005
  • In this study, we analyze computational simulation of cryogenic distillation process to separate $^{13}CH_4$ and $^{12}CH_4$ from LNG by using the cryogenic energy. Used computational simulation program is made Smoker's equation and FUG(Fenske-Underwood-Gilliland)'s method by short-cut method. Generally speaking, the technology of carbon isotope separation is studied by many methods, especially the separation by cryogenic distillation process is commercialized because of many merits.

  • PDF

N2O and CH4 Emission from Upland Forest Soils using Chamber Methods (플럭스챔버에 의한 N2O와 CH4의 산림에서의 토양배출량 측정연구)

  • Kim, Deug-Soo;Kim, Soyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.789-800
    • /
    • 2013
  • $N_2O$ and $CH_4$, Greenhouse gas emission, Forest soil, Closed chamber technique, Soil uptake $N_2O$ and $CH_4$ are important greenhouse gases (GHG) along with $CO_2$ influencing greatly on climate change. Their soil emission rates are highly affected by bio-geo-chemical processes in C and N through the land-atmosphere interface. The forest ecosystems are generally considered to be net emission for $N_2O$; however, net sinks for $CH_4$ by soil uptake. Soil $N_2O$ and $CH_4$ emissions were measured at Mt. Taewha in Gwangju, Kyeonggi, Korea. Closed chamber technique was used for surface gas emissions from forest soil during period from May to October 2012. Gas emission measurement was conducted mostly on daytime (from 09:00 to 18:00 LST) during field experiment period (total 25 days). The gas samples collected from chamber for $N_2O$ and $CH_4$ were analyzed by gas chromatography. Soil parameters were also measured at the sampling plot. GHG averages emissions during the experimental period were $3.11{\pm}16.26{\mu}g m^{-2}hr^{-1}$ for $N_2O$, $-1.36{\pm}11.3{\mu}gm^{-2}hr^{-1}$ for $CH_4$, respectively. The results indicated that forest soil acted as a source of $N_2O$, while it acted like a sink of $CH_4$ on average. On monthly base, means of $N_2O$ and $CH_4$ flux during May (spring) were $8.38{\pm}48.7{\mu}gm^{-2}hr^{-1}$, and $-3.21{\pm}31.39{\mu}gm^{-2}hr^{-1}$, respectively. During August (summer) both GHG emissions were found to be positive (averages of $2.45{\pm}20.11{\mu}gm^{-2}hr^{-1}$ for $N_2O$ and $1.36{\pm}9.09{\mu}gm^{-2}hr^{-1}$ for $CH_4$); which they were generally released from soil. During September (fall) $N_2O$ and $CH_4$ soil uptakes were observed and their means were $-1.35{\pm}12.78{\mu}gm^{-2}hr^{-1}$ and $-2.56{\pm}11.73{\mu}gm^{-2}hr^{-1}$, respectively. $N_2O$ emission was relatively higher in spring rather than other seasons. This could be due to dry soil condition during spring experimental period. It seems that soil moisture and temperature mostly influence gas production and consumption, and then emission rate in subsoil environment. Other soil parameters like soil pH and chemical composition were also discussed with respect to GHG emissions.

Separation Characteristics of $CH_4-CO_2$ Gas Mixture through Hollow Fiber Membrane Module (Hollow Fiber 막모듈을 이용한 $CH_4-CO_2$ 혼합기체의 분리특성)

  • Kim, Jin-Soo;Ahn, June-Shu;Lee, Sung-Moo
    • Membrane Journal
    • /
    • v.4 no.4
    • /
    • pp.197-204
    • /
    • 1994
  • In this study, permeation characteristics of pure $CH_4,\;CO_2$ and $CH_4/CO_2$ gas mixture were examined by permeation experiments through hollow fiber membrane module and experimental results were compared with simulation results. Permeation rate of pure gas increased with increaseing temperature in Arrhenius type. Activation energy was 6.61 kJ/mol for $CO_2$ and 25.26 kJ/mol for $CH_4$. In the permeation experiment of gas mixture, permeate flow rate and $CO_2$ concentration in permeate decreased and $CH_4$ concentration in reject increased with the increase of cut. Separation factor was in the range of 20~40 at 5~20 atm and 20% cut and it increased with pressure and against temperature Experimental values corresponded to numerical values with the deviation of 8% in permeate flow rate and $CO_2$ concentration in permeate and 15% in $CO_2$ concentration in reject.

  • PDF

Tribological Properties of Sputtered Boron Carbide Coating and the Effect of ${CH}_4$ Reactive Component of Processing Gas

  • Cuong, Pham-Duc;Ahn, Hyo-Sok;Kim, Jong-Hee;Shin, Kyung-Ho
    • KSTLE International Journal
    • /
    • v.4 no.2
    • /
    • pp.56-59
    • /
    • 2003
  • Boron carbide thin coatings were deposited on silicon wafers by DC magnetron sputtering using a ${B}_4$C target with Ar as processing gas. Various amounts of methane gas (${CH}_4$) were added in the deposition process to better understand their influence on tribological properties of the coatings. Reciprocating wear tests employing an oscillating friction wear tester were performed to investigate the tribological behaviors of the coatings in ambient environment. The chemical characteristics of the coatings and worn surfaces were studied using X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). It revealed that ${CH}_4$addition to Ar processing gas strongly affected the tribologcal properties of sputtered boron carbide coating. The coefficient of friction was reduced approximately from 0.4 to 0.1, and wear resistance was improved considerably by increasing the ratio of ${CH}_4$gas component from 0 to 1.2 vol %. By adding a sufficient amount of ${CH}_4$(1.2 %) in the deposition process, the boron carbide coating exhibited lowest friction and highest wear resistance.