• Title/Summary/Keyword: CFT구조

Search Result 156, Processing Time 0.037 seconds

Structural Behavior of Beam-to-Column Connections of Circular CFT Structures Improving Concrete Filling (충전성을 개선한 원형 CFT구조의 기둥-보 접합부 구조적 거동)

  • Park, Min-Soo;Kim, Hee-Dong;Lee, Myung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.737-745
    • /
    • 2011
  • A concrete-filled tube is a concrete-filled steel tube structure. The steel tube confines the concrete to increase the compressive strength, and the concrete contains the buckling of the tube. CFT structures require a diaphragm to prevent buckling of steel at connections. An outer diaphragm has better concrete filling than a through diaphragm due to a large bore, but being larger than the through diagram, it has poorer constructability and cooperation with building equipment. In this study, a CFT structure that uses different types of diaphragms in its upper and lower connections to improve the concrete filling was tested and analyzed via the FEM program. The building structure had a floor slab that was unified with the upper diaphragm, so the outer diaphragm was placed at the upper bound. Moreover, the through diaphragm was placed at the lower connection to avoid obstruction from building equipment. The CFT structure with the improved concrete filling showed the same structural behavior as the CFT structure with the use of the same type of diaphragms at the upper and lower connections.

Structural Characteristics of Beam-to-Column Connection of Circular CFT Columns by Using Mixed Diaphragms (혼합다이아프램 형식을 적용한 콘크리트충전 원형강관 기둥-보 접합부의 구조적 특성)

  • Wang, Ning;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.299-310
    • /
    • 2015
  • CFT(Concrete-Filled Tube) structures have problems at processing cause closed section and concrete filling problems. In this study, a CFT structure that uses different types of diaphragms in its upper and lower connections to improve the concrete filling was tested and analyzed via the FEM program. Implementation of variable analysis of EP-T type to find out the reason that effect on the resistance force of the connection. As a result, through experiments and analysis investigated the structural characteristics of circular CFT beam-to-column connection.

Structural Characteristic of Beam-to-Column Connections in Rectangular CFT Structures Considering Concrete Filling (충전성을 개선한 각형CFT 기둥-보 접합부의 구조 특성)

  • Park, Je Young;Lee, Myung Jea
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.187-196
    • /
    • 2013
  • CFT structures require a diaphragm to prevent buckling of steel at connections. An outer diaphragm has better concrete filling than a through diaphragm due to a large bore, but due to the larger size than the through diaphragm, it has poorer constructability and cooperation with building equipment. The building structure has a floor slab that was unified with the upper diaphragm, so the outer diaphragm was placed at the upper bound. Moreover, the through diaphragmwas placed at the lower connection to avoid obstruction of the building equipment. The CFT structure with the improved concrete filling showed the same structural behavior as the CFT structure with the use of the same type of diaphragms at the upper and lower connections.

Analytical Model for CFTA Girder (CFTA 거더의 해석모델 개발)

  • Jeon, Jong-Su;Park, Seung-Jae;Kim, Yong-Jae;Park, Myoung-Gyun;Kim, Jung-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.169-170
    • /
    • 2009
  • CFT structure has many advantages compared with the ordinary structural member made of steel or reinforced concrete. Because of increases in ductility, stiffness and load carrying capacity of overall structure owing to confinement effect of steel box and concrete, CFT structure is widely used to columns. Recently, the utilization of CFT member has been expanded to bridge structure as a girder member. The purpose of this study is to develop the analytical model and propose design method for CFTA girder bridge consisting of CFT structure, arch shape and tendons.

  • PDF

Experimental and Analytical studies on Failure Behavior of Stud Shear Connectors in CFT Structures (CFT 구조에 적용된 스터드 전단연결재의 파괴 거동에 대한 실험 및 해석적 연구)

  • Lee, Sangyoon
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.400-412
    • /
    • 2013
  • For the composite behavior of steel tube and inner concrete, the shear connectors should be applied to the CFT structures. However, the present design codes don't provide the design criteria that can be applied on shear connectors in the CFT structures typically filled with plain concrete. This study has been carried out to propose design criteria (shear strength and resistance factor) for the stud shear connectors in CFT structures. Experimental tests using the push-out specimens with the plain concrete blocks and finite element analysis were conducted for the purpose of verifying the main failure mode to propose the shear strength of studs in CFT structures. From the results of this study, the main failure mode of studs in CFT structures is splitting crack of concrete and this failure mode reduces shear strength of studs in CFT structures relatively to those embedded in RC blocks.

An Evaluation of Blast Resistance of Partially Reinforced CFT Columns using Computational Analysis (전산해석을 이용한 부분 보강된 CFT 기둥의 폭발저항성능 평가)

  • Kim, Han-Soo;Wee, Hae-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.503-510
    • /
    • 2015
  • In this paper, the blast resisting performance of partially reinforced CFT columns was compared with the normal CFT columns to evaluate the effect of reinforcing with steel plates. Autodyn which is a specialized hydro-code for analysis of explosion and impact was used to simulate the structural behavior of the CFT columns under the blast loadings. The interaction between concrete and surrounding steel plates was modeled with friction and join option to represent the realistic damage of columns. According to the analysis, the partially reinforced CFT column showed enhanced blast resisting performance than the normal CFT columns. Also the improvement of blast resisting performance was depended on the height of reinforcing steel plates.

Punching Shear Strength of CFT Column to RC Flat Plate Connections Reinforced with Shearhead (전단머리 보강 CFT기둥-RC 무량판 접합부의 펀칭전단강도)

  • Kim, Jin-Won;Lee, Cheol-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.423-433
    • /
    • 2012
  • This paper summarizes full-scale gravity-load test results on CFT column-to-RC flat plate connections reinforced with shearhead. CFT construction has many structural and constructional advantages over conventional steel and RC column construction and is gaining wide acceptance. Meanwhile the use of RC flat plate system in the basement and residential floors of tall buildings is often mandatory to reduce story height and enable rapid construction in domestic practice. Combining CFT column and flat plate floor is expected to result in further rapid construction. However, the issues related to connecting CFT column to RC flat plate have not been fully addressed yet. Several promising connecting schemes by using steel shearhead were proposed and tested in this study. Test results showed that the proposed connection can exhibit the punching shear strength higher than RC flat plate counterparts. An empirical formula that can reasonably predicts the punching shear strength of the proposed connection was also proposed.

Structural Performance of Y Type Plate Connection between Circular CFT Column and H Shape Steel Beam (Y형 플레이트를 적용한 원형 CFT 기둥-H형강 보 접합부의 구조성능)

  • Jo, Hyun-Kook;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.112-118
    • /
    • 2015
  • These days, there are lots of skyscrapers being constructed in downtown areas. However, it requires columns which have a way heavier load. and far more extensive cross sections of column as well. Therefore, it is hard to lay the foundation in downtown areas. This being the case, composite columns such as CFT column are primarily being used. However, CFT column is occurred of difficult beam-column connection development and lower performance since CFT column is closed cross-section. Especially, the result of the study concerning development of connection details with CFT column and exterior diaphragms are very low in current state. In this study, through developing CFT column-H shape steel beam applicating Y shape plate, set width and depth of Y shape plate which affect structural performance of connection details applicating Y shape plate as main variables, and evaluate structural performance through experiments. And also, design Y shape plate used at experiments as setting allowable stress for tension suggested at design criteria lower than axial force of tension side flange connected Y shape plate, through shape of destruction, verify the structural safety and performance of Y shape plate.

Development of Non-linear Finite Element Modeling Technique for Circular Concrete-filled Tube (CFT) (원형 콘크리트 충전 강관 (CFT)의 비선형 유한 요소 해석 기법 개발)

  • Moon, Jiho;Ko, Heejung;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.139-148
    • /
    • 2012
  • Circular concrete-filled tubes (CFTs) are composite members, which consists of a steel tube and concrete infill. CFTs have been used as building columns and bridge piers due to several advantages such as their strength-to-size efficiency and facilitation of rapid construction. Extensive experimental studies about CFT have been conducted for past decades. However experimental results alone are not sufficient to support the engineering of these components. Complementary advanced numerical models are needed to simulate the behavior of CFT to extend the experimental research and develop predictive tools required for design and evaluation of structural systems. In this study, a finite element modeling technique for CFT was developed. The confinement effects, and behavior of CFT subjected various types of loading predicted by the proposed finite element model for CFT were verified by comparing with test results.

Long-Term Behavior of CFT Column under Central Axial Load (중심축 하중을 받는 CFT 기둥의 장기거동에 관한 연구)

  • 권승희;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.77-85
    • /
    • 2001
  • Concrete filled steel tubular (CFT) columns are becoming popular in structural applications. The increased popularity comes from their excellent structural properties such as high strength, high ductility, and large energy absorption capacity. However, the disadvantage feature of CFT column is the difficulty in predicting its time dependant characteristic (i.e., creep and shrinkage) of inner concrete. The time dependent behavior of CFT column can cause serious serviceability problems. Therefore, it is necessary to investigate the long term behavior of CFT column. This paper presents analytical and experimental studies on long-term behavior of CFT-column under a central axial loading. Two loading cases are considered in the research; (1) the load applied only at the inner core concrete of CFT-column and (2) the load applied simultaneously on both concrete and steel tube. Analysis method using the bond strength model is proposed and conclusions on long-term properties of CFT-column can be derived from the results.