• Title/Summary/Keyword: CFS

Search Result 342, Processing Time 0.02 seconds

Flexural Failure Behaviour of RC Beams Strengthened by CFS according to Loading Condition (CFS로 보강된 RC보의 가력상태에 따른 휨파괴 거동)

  • Park, Sung-Soo;Cho, Su-Je
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.223-230
    • /
    • 2003
  • The purpose of this research are to investigate experimentally flexural strengthening effects and flexural behaviour of RC beams strengthened by carbon fiber sheet(CFS) with/without superimposed pre-load. Test parameters of experiment are tension reinforcement ratio(0.85, 1.32, 1.91%) and pre-load(80% of yield capacity of unstrengthened beams). The structural behaviour of strengthened beams are compared with in terms of yield load and ultimate load, load-deflection relation, ductility, strengthened efficiency. From the test results, it were shown that ultimate capacity and flexural failure behaviour of RC beams strengthened by CFS changed by initial stresses between original beams and bonded CFS.

Reinforcing effects of carbon fiber sheet by compressive strength differences on the RC slabs (도로교 RC 상판의 압축강도 차이에 따른 탄소섬유시트 보강효과)

  • Won, Chan Ho;Abe, Tadashi;Ahn, Tae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.23-27
    • /
    • 2016
  • This study investigates the effect of carbon fiber sheet (CFS) and carbon fiber strand sheet (CFSS) on the fatigue resistance and compressive strength of RC slabs. The results of a comparison of the number of equivalent cycles between the CFS- and CFSS-reinforced RC slab test specimens obtained from a fatigue test indicate that the CFSS-reinforced RC slab has 1.2~1.3 times greater effect of reinforcement than the CFS-reinforced RC slab. This study also indicates that the fatigue resistance of the CFS- and CFSS-reinforced RC slabs is ensured when the compressive strength of concrete is not lower than the specified design strength prescribed in the Specifications for Highway Bridges but is not ensured when the compressive strength of concrete is lower than the specified design strength, although the effect of reinforcement is secured.

Analytical Study on the Flexural Strength of CFS Reinforced Concrete Beams under Service Loads (사용하중을 받는 RC보의 탄소섬유 휨 보강에 관한 해석적 연구)

  • Yoon, Tae-Ho;Kang, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3745-3751
    • /
    • 2011
  • In this study flexural strength of damaged concrete beams reinforced by CFS is analysed. Nonlinear section analysis is used to include stress status of tension bars and compressive concrete under loads acting on the original member at the time of strengthening. Calculated flexural strength is compared with Sin-Hong formula which is frequently used in CFS reinforcement design. Nonlinear analysis with variation of the number of strengthening CFS, the ratio of tensile reinforcement, the ratio of section dimension shows that the flexural strength of CFS reinforced beams much depends on reinforcing stage. From the result of this analysis, the flexural strength of CFS reinforced concrete beam is reduced according to the magnitude of pre-loaded service loads.

A Study on developing Flight Software for Nano-satellite based on NASA CFS (NASA CFS에 기반한 초소형 위성용 비행소프트웨어 개발에 관한 연구)

  • Choi, Won-sub;Kim, Jin-Hyoung;Kim, Hae-dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.997-1005
    • /
    • 2016
  • Flight software plays an important role in operating satellites, such as processing commands from ground station, controlling satellites and processing mission data. Reliability is the most important thing in flight software and many verifications and tests are needed for assuring it. this causes an increase of cost and period of development. So NASA has developed a reusable flight software platform to apply to their satellite projects. The CFS(Core Flight System) is the very result. We are developing our flight software for a nano-satellite based on NASA CFS. We have tested core services and functions provided in CFS and we have designed and implemented flight software based on these.

Algorithms for Detecting Coupling Faults in Semiconductor RAM's (반도체 RAM의 결합고장을 검출하는 알고리듬)

  • 여정모;조상복
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.1
    • /
    • pp.51-63
    • /
    • 1993
  • "Algorithm DA" is proposed to test linked 2-CFs(2-Coupling Faults) with order 2 or 3 which are not perfectly detected in conventional algorithms. "Test 1*", "Test 2*" and "Algorithm RA" are proposed restricted 3-CFS. The time complexity of "Test 1*" is reduced in view of the detection of 3-CFS. "Test 2*" and "Algorithm RA" have not only the reduces time complexity but also the improved fault coverage in comparison with conventional algorithms. And "Algorithm RA" can be applied step by step according to the degree of the fault coverage. If "Algorithm RA" is applied to the memory with parallel test. its time complexity is reduced considerably. It is proved that the MT(March Test) with nonlinear address sequences can not detect perfectly the CFs more complex than linked 2-CFs with order 3.ss sequences can not detect perfectly the CFs more complex than linked 2-CFs with order 3.

  • PDF

A Survey of the Serotype Distribution of Streptococcus mutans Isolated from Dental Plaques of Caries-active and Caries-free Subjects (치아우식증환자와 치아정상인(齒牙正常人)의 치태(齒苔)에서 분리(分離)한 Streptococcus mutans의 혈청형(血淸型) 분포(分布)에 관(關)한 조사(調査) 연구(硏究))

  • Lee, Jean-Yong;Choi, Eu-Gene;Ha, Youn-Mun
    • The Journal of the Korean Society for Microbiology
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 1983
  • An epidemiological survey was carried out to identify the serotypes of Streplococcus mutans isolated from carious lesions of 65 caries-active subjects(CAS) and sound tooth surfaces of 40 caries-free subjects(CFS). The autoclaved antigen extract was performed on each isolate, and then, serotypes of the isolates were determined in agar-gel immunodiffusion test. The results were as follows: 1. S. mutans was found in 78% of the samples of CAS, and of CFS. The difference of isolation frequency between CAS and CFS was not observed. 2. Only one serotype per single subject was detected in 61% of total samples, in remaining 39% of samples two or more serotypes were detected. 3. In 41.2% of CAS samples plural serotypes of S. mutans were found, whereas 35.5% of CFS samples showed plural serotypes distribution. 4. The most frequently identified serotype in each subject was serotype c; 69.5% of subjects harbored serotype c S. mutans. Serotype d was next most frequently isolated from subjects, comprising 23.2%. 5. Serotype c strain was found in 64.7% of CAS, 77.4% of CFS. 6. Of the isolates from CAS and CFS, serotype c was most commonly found, comprising 48.8%, serotype d was found in 16.3%, serotypes f. e, and g comprising 13.2%, 9.3%, and 7.8% respectively. Serotypes a and b were also found but in far lower frequencies(2.3%, 0.8%). 7. Serotype c strains were more found in CFS than in CAS, but serotypes d and e were more found in CAS.

  • PDF

A Study on Flexural Behavior of Externally Reinforced R.C. Beam with Carbon Fiber Sheet : In Case of Constructional Deficiencies (탄소섬유시트로 보강된 철근콘크리트 보의 시공불량시 휨 거동에 관한 연구)

  • Park, Hyun-Jung;Lee, Hong-Ju;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.95-102
    • /
    • 2002
  • The flexural behavior of the reinforced concrete (RC) structure upgraded by external reinforcements was examined in this study. It is well known that the incorporation of carbon fiber sheet (CFS) with concrete is one of the most effective ways to strengthen the RC structure. Complete bonding is required between CFS and concrete in order to make the RC structure provide its full function until the time the Re structures serve. Many studies have reported that construction deficiencies have caused the debonding of the CFS from concrete before the RC structure with CFS reaches its ultimate capacity. This research took a systematic look at the failure mechanism, macroscopic load-deformation characteristics, the maximum load applied, and maximum bending moment when construction deficiencies exist. The results of the experiment conducted were compared with theoretically derived values. In the future, the results of this investigation will help minimize the factors of construction deficiencies, which may occur when CFS is used to reinforce a RC structure. The experiment was manipulated with steel reinforcement ratio and piles of CFS on a total of 14 beams ($20cm{\times}30cm{\times}240cm$). The results showed that internal moment capacity increased even when construction deficiencies existed. However, RC structures with CFS in the field still contain a considerable level of potential risks.

Seismic performance of CFS shear wall systems filled with polystyrene lightweight concrete: Experimental investigation and design methodology

  • Mohammad Rezaeian Pakizeh;Hossein Parastesh;Iman Hajirasouliha;Farhang Farahbod
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.497-512
    • /
    • 2023
  • Using light weight concrete as infill material in conventional cold-formed steel (CFS) shear wall systems can considerably increase their load bearing capacity, ductility, integrity and fire resistance. The compressive strength of the filler concrete is a key factor affecting the structural behaviour of the composite wall systems, and therefore, achieving maximum compressive strength in lightweight concrete while maintaining its lightweight properties is of significant importance. In this study a new type of optimum polystyrene lightweight concrete (OPLC) with high compressive strength is developed for infill material in composite CFS shear wall systems. To study the seismic behaviour of the OPLC-filled CFS shear wall systems, two full scale wall specimens are tested under cyclic loading condition. The effects of OPLC on load-bearing capacity, failure mode, ductility, energy dissipation capacity, and stiffness degradation of the walls are investigated. It is shown that the use of OPLC as infill in CFS shear walls can considerably improve their seismic performance by: (i) preventing the premature buckling of the stud members, and (ii) changing the dominant failure mode from brittle to ductile thanks to the bond-slip behaviour between OPLC and CFS studs. It is also shown that the design equations proposed by EC8 and ACI 318-14 standards overestimate the shear force capacity of OPLC-filled CFS shear wall systems by up to 80%. This shows it is necessary to propose methods with higher efficiency to predict the capacity of these systems for practical applications.

Improvement in Fatigue Durability of RC Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 RC 보의 피로내구성 향상에 관한 연구)

  • Park, Jeong-Yong;Kim, Seong-Do;Jo, Baik-Soon;Kim, In-Tae;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.205-212
    • /
    • 2006
  • In recent investigations, reinforced concrete beams strengthened with Carbon Fiber Sheets (CFS) subjected to fatigue loading were reported to be failed at the ends of CFS by its debonding. U-shaped CFS were attached to both ends of the CFS when fatigue tests on strengthened beams were conducted to delay and/or prevent fatigue failures of adhesive interface. The experimental parameters of this study were the usage of anchorage at the ends of CFS, the number of CFS layers, and the applied load levels of 60%~90% of the static ultimate load obtained from the static tests. The failure modes and the load cycle-deflection relations were observed and discussed from the experimental results. Those results also showed that the U-shaped anchoring system changes the fatigue failure modes and influences greatly on the fatigue capacity of the strengthened beams.

Efficient cross-sectional profiling of built up CFS beams for improved flexural performance

  • Dar, M. Adil;Subramanian, N.;Atif, Mir;Dar, A.R.;Anbarasu, M.;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.333-345
    • /
    • 2020
  • In the past, many efficient profiles have been developed for cold-formed steel (CFS) members by judicious intermediate stiffening of the cross-sections, and they have shown improved structural performance over conventional CFS sections. Most of this research work was based on numerical modelling, thus lacking any experimental evidence of the efficiency of these sections. To fulfill this requirement, experimental studies were conducted in this study, on efficient intermediately stiffened CFS sections in flexure, which will result in easy and simple fabrication. Two series of built-up sections, open sections (OS) and box sections (BS), were fabricated and tested under four-point loading with same cross-sectional area. Test strengths, modes of failure, deformed shapes, load vs. mid-span displacements and geometric imperfections were measured and reported. The design strengths were quantified using North American Standards and Indian Standards for cold-formed steel structures. This study confirmed that efficient profiling of CFS sections can improve both the strength and stiffness performance by up to 90%. Closed sections showed better strength performance whereas open sections showed better stiffness performance.