• Title/Summary/Keyword: CFRP-bar

Search Result 57, Processing Time 0.027 seconds

An Experimental Study on the Strengtheing Effect of Reinforced Concrete Beams Strengthened by CFRP Rod (탄소섬유막대로 보강한 철근콘크리트 보의 보강효과에 관한 실험적 연구)

  • Park, Sung-Moo;Kim, Jae-Hun;Park, Kwang-Seob
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.85-91
    • /
    • 2004
  • Rehabilitations of reinforced concrete(RC) structures using advanced fibre-reinfored plastic(FRP) composites has become very popular in last few years. Typical method of strengthening strategy using FRP composite is bonding the CFRP plate or sheet on the surface of existing concrete structures. Many researches, however, have shown that bonding FRP plate or sheet on the surface of concrete has tendancy to debond prematurely induced by stress concentrations at the end of the plate. In order for overcoming the premature failure, the filling-up method which places FRP-rod into the existing concrete sawing groove has been developed. Through filling-up test results, aims of this research is to investigate the efficiencies of the filling-up method and is to determine the availabilities of traditional flexural theories that has provided all over the world.

  • PDF

Bond Performance of FRP Reinforcing Bar for Concrete Structures after Chemical Environmental Exposure (화학적 환경에 노출된 콘크리트 보강용 FRP 보강근의 부착 성능)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.73-81
    • /
    • 2004
  • FRP reinforcing bars(rebars) are produced through a variety of manufacturing process includes pultrusion, and filament winding and braiding etc. Each manufacturing method produces a different surface condition of FRP rebar. The surface properties of FRP rebar is an important property for mechanical bond with concrete. Current methods of providing surface deformation to FRP rebars include helical wrapping, surfaces and coating and rib molding. The problem with the helical wrapping method is that it can not provide enough surface deformation for good bond and it can be easily sheard off from the FRP rebars. Sand coating and rib molding provide surface deformation only to the outer FRP skins. Therefore, FRP rebar has about 60% of bond strength of steel rebar. The main objective was to evaluate the bond properties of FRP rebar after environmental exposure. Five types of FRP rebar includes CFRP ISO, GFRP Aslan, AFRP Technora CFRP(Korea), and GFRP(Korea) rebars performed direct bond tests. Also, FRP rebar bond specimens were subjected to exposure conditions including alkaline solution, acid solution, salt solution and deionized water etc. According to bond test results, CFRP(Korea) and CFRP(Korea) rebars were found to have better bond strength with concrete than previous FRP rebars. Also, FRP(Korea) rebar had more than about 70% in bond strength of steel rebar.

Experimental Study on the Removal of Biofouling from Specimens of Small Ship Constructions Using Water Jet (물 제트를 이용한 소형선박제작 시편의 선체부착생물 제거에 관한 실험적 연구)

  • Seo, Daewon;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1078-1085
    • /
    • 2022
  • Fouling organisms attached to a ship not only greatly increase the resistance of the ship as they grow on the hull but also cause disturbances in local marine ecosystems as they move with the ship. Accordingly, the International Maritime Organization has started discussing the removal of biofouling and evaluation of cleaning performance to prevent the migration of hull-fouling species. In this study, specimens of FRP(Fiber Reinforced Plastic), HDPE(High Density Polyethylene), and CFRP(Carbon Fiber Reinforced Plastic) materials used for small ship construction were cured in Gyeokpo Port (Jeonlakbuk-do) for about 80 days. Then, attached organism removal experiments were performed using a water jet nozzle. The results show that seaweeds, such as laver, were removed when the distance between the nozzle and the specimen was 1.8 cm and the pressure was 100 bar. Furthermore, it was confirmed that the cleaning of barnacles was possible only when the pressure was 200 bar or more.

Shear Behavior of Concrete Beams Reinforced with FRP Bar (FRP Bar 보강 콘크리트 보의 전단거동)

  • Choi, Ik-Chang;Jung, Dae-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.4
    • /
    • pp.403-409
    • /
    • 2013
  • Shear behavior of concrete beams reinforced with steel and/or FRP bar is studied through experimental tests. Experimental parameters includes the mechanical properties of reinforcements in shear and bending, and the ratio of shear reinforcement. The validity of the modified truss analogy, that has been widely accepted as a basis for the practical shear design of concrete beams, has been examined thoroughly by analyzing experimental results. The experimental results indicate that the modified truss analogy cannot be directly adopted to the shear problem of concrete beams reinforced with FRP bar.

Tension Stiffening Effect in Axially loaded Concrete Member Oncrete Member (축방향 인장을 받는 콘크리트 부재의 FRP 보강근의 인장강화 효과)

  • Nak Sup Jang;Chi Hoon Nho;Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.47-54
    • /
    • 2023
  • In this study, the tensile behavior of concrete specimens reinforced with GFRP (Glass Fiber Reinforced Polymer), BFRP (Basalt Fiber Reinforced Polymer), and CFRP (Carbon Fiber Reinforced Polymer) bars was experimentally analyzed. The tensile strength of the FRP bars is appeared to be similar to the design strength, but the elastic modulus was somewhat lower. Additionally, the specimens for tension stiffening effect were manufacured using OPC (Ordinary Portland Cement) and SFRC (Steel Fiber Reinforced Concrete), with dimensions of 150(W)×150(B)×1000(H) mm. The crack spacing of specimens was most significant for GFRP reinforcement bars, which have a lower elastic modulus and a smoother surface, while BFRP and CFRP bars, with somewhat rougher surfaces and higher elastic moduli, showed similar crack spacings. In the load-strain relationship, GFRP bars exhibited a relatively abrupt behavior after cracking, whereas BFRP and CFRP bars showed a more stable behavior after the cracking phase, maintaining a certain level of tension stiffening effect. The tension stiffening index was somewhat smaller as the diameter increased, and GFRP, compared to BFRP, showed a higher tension stiffening index.

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.

Applicability of Hyblid FRP Reinforcing Bar for Self-diagnosis of Concrete Fracture (콘크리트 파괴 자가진단을 위한 하이브리드 FRP 보강근의 적용 특성)

  • Park, Seok-Kyun;Kim, Dae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.439-445
    • /
    • 2006
  • For investigating self-diagnosis applicability, a method based on monitoring the changes in the electrical resistance of hybrid FRP(having electrical property) reinforced concrete has been tested. Then after examining change in the value of electrical resistance of carbon fiber in CFRP(non-hybrid type), CFGFRP and CFAFRP(hybrid type) before and after the occurrence of cracks and fracture in non-hybrid and hybrid FRP reinforced concrete at each flexural weight-stage, the correlations of each factors(the changes in electrical resistance and load as a function of strain, deflection) were analyzed. As the results, it is clarified that when the carbon fiber tows fracture, the electrical resistance of it increase largely, and afterwards hybrid FRP composites can be resist the load due to the presence of the reinforced fiber, for example, glass fiber or aramid fiber tows. Therefore, it can be recognized that hybrid FRP(including carbon fiber) reinforcing bar could be applied for self-diagnosis of fracture in reinforced FRP concrete fracture.

A Study on the Evaluation of Flexural Capacity and Design Equation of FRP Reinforcement-Concrete Beams (FRP보강근-콘크리트보의 휨성능과 휨설계식의 평가 연구)

  • Ko, Dong Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.59-66
    • /
    • 2022
  • In this paper, the flexural capacity equation of FRP-bar reinforced concrete beams was verified by comparing the experimental results and flexural capacity obtained according to the ACI procedure. And, also the economic feasibility of FRP-bar reinforced concrete beams was analyzed by comparing nominal moment capacity of beams. The results of analysis were as follows, 1) GFRP concrete beams have lower flexural performance than reinforced concrete beams, whereas CFRP concrete beams have similar flexural performance to reinforced concrete beams under the same reinforcement ratio 2) Although the design moment increased as the compressive strength of concrete increased, the flexural performance of GFRP reinforced concrete beams was found to be lower than the reinforced concrete beams for all reinforcement ratios.

Acquisition and Verification of Dynamic Compression Properties for SHPB of Woven Type CFRP (Woven Type CFRP의 SHPB에 대한 동적 압축 물성 획득 및 검증)

  • Park, Ki-hwan;Kim, Yeon-bok;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.363-372
    • /
    • 2020
  • Dynamic compressive material properties at high strain rates is essential for improving the reliability of finite element analysis in dynamic environments, such as high-speed collisions and high-speed forming. In general, the dynamic compressive material properties for high strain rates can be obtained through SHPB equipment. In this study, SHPB equipment was used to acquire the dynamic compressive material properties to cope with the collision analysis of Woven tpye CFRP material, which is being recently applied to unmanned aerial vehicles. It is also used as a pulse shaper to secure a constant strain rate for materials with elastic-brittle properties and to improve the reliability of experimental data. In the case of CFRP material, since the anisotropic material has different mechanical properties for each direction, experiments were carried out by fabricating thickness and in-plane specimens. As a result of the SHPB test, in-plane specimens had difficulty in securing data reproducibility and reliability due to fracture of the specimens before reaching a constant strain rate region, whereas in the thickness specimens, the stress consistency of the specimens was excellent. The data reliability is high and a constant strain rate range can be obtained. Through finite element analysis using LS-dyna, it was confirmed that the data measured from the pressure rod were excessively predicted by the deformation of the specimen and the pressure rod.

Concrete Shear Strength of High Strength Concrete Beams Reinforced with FRP Bars (FRP Bar를 사용한 고강도 콘크리트 보의 콘크리트 전단강도)

  • Yun, Hyeong-Su;Jang, Hee-Suk;Kim, Hee-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.287-290
    • /
    • 2005
  • This study evaluates the concrete shear strength for normal and high strength concrete beams reinforced with 3 type FRP bars (CFRP, GFRP, HFRP). Experimental results obtained from twenty-four simply supported concrete beams are compared with values predicted by FRP shear strength expressions proposed in the various literatures, including the ACI Committee 318 and ACI Committee440. The shear strength correction factors are proposed through the regression analysis.

  • PDF