• Title/Summary/Keyword: CFRP sheets

Search Result 139, Processing Time 0.026 seconds

Damage-based stress-strain model of RC cylinders wrapped with CFRP composites

  • Mesbah, Habib-Abdelhak;Benzaid, Riad
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.539-561
    • /
    • 2017
  • In this study, the effects of initial damage of concrete columns on the post-repair performance of reinforced concrete (RC) columns strengthened with carbon-fiber-reinforced polymer (CFRP) composite are investigated experimentally. Four kinds of compression-damaged RC cylinders were reinforced using external CFRP composite wraps, and the stress-strain behavior of the composite/concrete system was investigated. These concrete cylinders were compressed to four pre-damaged states including low -level, medium -level, high -level and total damage states. The percentages of the stress levels of pre-damage were, respectively, 40, 60, 80, and 100% of that of the control RC cylinder. These damaged concrete cylinders simulate bridge piers or building columns subjected to different magnitudes of stress, or at various stages in long-term behavior. Experimental data, as well as a stress-strain model proposed for the behavior of damaged and undamaged concrete strengthened by external CFRP composite sheets are presented. The experimental data shows that external confinement of concrete by CFRP composite wrap significantly improves both compressive strength and ductility of concrete, though the improvement is inversely proportional to the initial degree of damage to the concrete. The failure modes of the composite/damaged concrete systems were examined to evaluate the benefit of this reinforcing methodology. Results predicted by the model showed very good agreement with those of the current experimental program.

FRP Confinement of Heat-Damaged Circular RC Columns

  • Al-Nimry, Hanan Suliman;Ghanem, Aseel Mohammad
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.115-133
    • /
    • 2017
  • To investigate the effectiveness of using fiber reinforced polymer (FRP) sheets in confining heat-damaged columns, 15 circular RC column specimens were tested under axial compression. The effects of heating duration, stiffness and thickness of the FRP wrapping sheets were examined. Two specimen groups, six each, were subjected to elevated temperatures of $500^{\circ}C$ for 2 and 3 h, respectively. Eight of the heat-damaged specimens were wrapped with unidirectional carbon and glass FRP sheets. Test results confirmed that elevated temperatures adversely affect the axial load resistance and stiffness of the columns while increasing their ductility and toughness. Full wrapping with FRP sheets increased the axial load capacity and toughness of the damaged columns. A single layer of the carbon sheets managed to restore the original axial resistance of the columns heated for 2 h yet, two layers were needed to restore the axial resistance of columns heated for 3 h. Glass FRP sheets were found to be less effective; using two layers of glass sheets managed to restore the axial load carrying capacity of columns heated for 2 h only. Confining the heat-damaged columns with FRP circumferential wraps failed in recovering the original axial stiffness of the columns. Test results confirmed that FRP-confining models adopted by international design guidelines should address the increased confinement efficiency in heat-damaged circular RC columns.

Flexural Adhesive Behavior of Full-scale RC Beams Strengthened by Carbon Fiber Sheets (실물모형 실험에 의한 탄소섬유쉬트 보강 RC 보의 휨 부착거동)

  • 최기선;류화성;최근도;이한승;유영찬;김긍환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1003-1008
    • /
    • 2001
  • It is recently reported that bond failure can be initiated in the region where maximum bending moment and shear force is acted by accompanying shear deformation after flexural crack in full-scale RC beams strengthened by CFRP. Such a shear deformation effect causing bond failure is relatively little in the case of small-scale specimens. So, additional reinforcing details to the critical beam section where maximum moment and shear were acted is required to prevent the bond failure caused by the shear deformations. The U-type wrapping methods by CFRP to the critical beam section is proposed and tested in this paper. Also, the applicability of design bond strength derived from the tests of small-scale beam was investigated by the full-scale RC beam strengthened by CFRP.

  • PDF

Modeling of RC shear walls strengthened by FRP composites

  • Sakr, Mohammed A.;El-khoriby, Saher R.;Khalifa, Tarek M.;Nagib, Mohammed T.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.407-417
    • /
    • 2017
  • RC shear walls are considered one of the main lateral resisting members in buildings. In recent years, FRP has been widely utilized in order to strengthen and retrofit concrete structures. A number of experimental studies used CFRP sheets as an external bracing system for retrofitting of RC shear walls. It has been found that the common mode of failure is the debonding of the CFRP-concrete adhesive material. In this study, behavior of RC shear wall was investigated with three different micro models. The analysis included 2D model using plane stress element, 3D model using shell element and 3D model using solid element. To allow for the debonding mode of failure, the adhesive layer was modeled using cohesive surface-to-surface interaction model at 3D analysis model and node-to-node interaction method using Cartesian elastic-plastic connector element at 2D analysis model. The FE model results are validated comparing the experimental results in the literature. It is shown that the proposed FE model can predict the modes of failure due to debonding of CFRP and behavior of CFRP strengthened RC shear wall reasonably well. Additionally, using 2D plane stress model, many parameters on the behavior of the cohesive surfaces are investigated such as fracture energy, interfacial shear stress, partial bonding, proposed CFRP anchor location and using different bracing of CFRP strips. Using two anchors near end of each diagonal CFRP strips delay the end debonding and increase the ductility for RC shear walls.

Improvement and Evaluation of Seismic Performance of Reinforced Concrete Exterior Beam-Column Joints using Embedded CFRP Rods and CFRP Sheets (매입형 CFRP Rod와 CFRP시트를 활용한 RC 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Kang, Hyun-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.40-48
    • /
    • 2014
  • In this study, experimental research was carried out to evaluate and improve the seismic performance of reinforced concrete beam-column joint regions using strengthening materials (embedded CFRP rod and CFRP sheet) in existing reinforced concrete building. Therefore it was constructed and tested six specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of existing reinforced concrete building, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and confinement of retrofitting materials during testing. Specimens RBCJ-SRC2, designed by the retrofitting of CFRP Rod and CFRP Sheet in reinforecd beam-column joint regions were increased its maximum load carrying capacity by 1.97 times and its energy dissipation capacity by 2.08 times in comparison with standard specimen RBCJ for a displacement ductility of 4 and 7. Also, specimens RBCJ-SRC2 were increased its maximum load carrying capacity by 1.09~1.11 times in comparison with specimen RBCJ-SR series. And Specimens RBCJ-CS, RBCJ-SR series, RBCJ-SRC2 were increased its energy dissipation capacity by 1.10~2.30 times in comparison with standard specimen RBCJ for a displacement ductility of 5, 6.

Dynamic Characteristics of CFRP Structure Member According to Change the Stacking Angle and Shape (적층각 및 형상 변화에 따른 CFRP 구조부재의 동적 특성)

  • Yeo, In-Goo;Choi, Ju-Ho;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.388-393
    • /
    • 2013
  • Carbon fiber reinforced plastic (CFRP) has many desirable qualities, including being lightweight and very strong. These characteristics have led to its use in applications ranging from small consumer products to vehicles. Circular and square CFRP members were fabricated using 8ply unidirectional prepreg sheets stacked at different angles ($[+15^{\circ}/-15^{\circ}]_4$, $[+45^{\circ}/-45^{\circ}]_4$ and $[90]_8$, where $0^{\circ}$ coincides with the axis of the member). Based on the collapse characteristics of a CFRP circular member, the collapse characteristics and energy absorption capability were analyzed. Impact collapse tests were carried out for each section member. In this study, the impact energies at crossheads speeds of 5.52 m/s, 5.14 m/s and 4.57 m/s were 611.52 J, 529.2 J and 419.44 J (circular member) 2.16 m/s, 1.85 m/s and 1.67 m/s are 372.4 J, 274.4 J and 223.44 J (square member). The purpose is to experimentally examine the absorption behavior and evaluation the strength in relation to changes in the stacking configuration when the CFRP circular members with different stacking configurations were exposed to various impact velocities. In addition, the dynamic characteristics were considered.

Reliability Assessment of Reinforced Concrete Beams Strengthened by CFRP Laminates (CFRP 적층판으로 보강된 철근콘크리트보의 신뢰성평가)

  • 조효남;최영민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.160-166
    • /
    • 1994
  • In general, the problems of strengthening and repairing of deteriorated or damaged reinforced concrete members are usually worked out in situ by externally bounding steel plates using epoxy resins, which has been recognized to be one of effective and convenient methods. But the disadvantages of strengthening/repairing concrete members with externally bonded steel plates include ; (a) deterioration of the bond at the steel-concrete interface caused by the corrosion of steel ; (b) difficulty in manipulating the plate at the construction site ; (c) improper formation of joints, due to the limited delivery lengths of the steel plates ; and etc. Therefore these difficulties eventually have led to the concept of replacing the steel plates by fiber-reinforced composite sheets which are characterized by their light weight, extremely high stiffness, excellent fatigue properties, and outstanding corrosion resistance. In the paper, for the reliability assessment of reinforced concrete beams externally strengthened by carbon fiber plastic(CFRP) laminates, an attempt is made to suggest a limit state model based on the strain compatibility method and the concept of fracture mechanics. And the reliability of the proposed models is evaluated by using the AFOSM method. The load carrying capacity of the deteriorated and/or damaged RC beams is considerably increased. Thus, it may be stated that the post-strengthening of concrete beams with externally bonded CFRP materials may be one of very effective way of increasing the load carrying capacity and stiffeness characteristics of existing structures.

  • PDF

Impact Collapse Behavior of Hybrid Circular Thin-walled Member by Stacking Condition (적층조건에 따른 혼성 원형 박육부재의 충격압궤거동)

  • Lee, Kil-Sung;Park, Eu-Ddeum;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.235-240
    • /
    • 2010
  • The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, energy absorbing members should be absorbed with collision energy sufficiently. But vehicle structure must be light weight for the environmentally-friendly aspect, in order to improve fuel efficiency and to reduce tail gas emission. Therefore, the light weight of vehicle must be achieved in a status of securing safety of crash. An aluminum or CFRP (Carbon Fiber Reinforced Plastics) is representative one among the light-weight materials. In this study, impact collapse behavior of circular hybrid thin-walled member is evaluated. The hybrid members are manufactured by wrapping CFRP prepreg sheets outside the aluminum circular members in the autoclave. Because the CFRP is an anisotropic material whose mechanical properties change with its stacking condition, special attention is given to the effects of the stacking condition on the collapse behavior evaluation of the hybrid thin-walled member. Collapse mode and energy absorption capability of the hybrid thin-walled member are analyzed with change of the fiber orientation angle and interface number.

Axial behavior of FRP-wrapped circular ultra-high performance concrete specimens

  • Guler, Soner
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.709-722
    • /
    • 2014
  • Ultra-High Performance Concrete (UHPC) is an innovative new material that, in comparison to conventional concretes, has high compressive strength and excellent ductility properties achieved through the addition of randomly dispersed short fibers to the concrete mix. This study presents the results of an experimental investigation on the behavior of axially loaded UHPC short circular columns wrapped with Carbon-FRP (CFRP), Glass-FRP (GFRP), and Aramid-FRP (AFRP) sheets. Six plain and 36 different types of FRP-wrapped UHPC columns with a diameter of 100 mm and a length of 200 mm were tested under monotonic axial compression. To predict the ultimate strength of the FRP-wrapped UHPC columns, a simple confinement model is presented and compared with four selected confinement models from the literature that have been developed for low and normal strength concrete columns. The results show that the FRP sheets can significantly enhance the ultimate strength and strain capacity of the UHPC columns. The average greatest increase in the ultimate strength and strain for the CFRP- and GFRP-wrapped UHPC columns was 48% and 128%, respectively, compared to that of their unconfined counterparts. All the selected confinement models overestimated the ultimate strength of the FRP-wrapped UHPC columns.

Tests and Design Provisions for Reinforced-Concrete Beams Strengthened in Shear Using FRP Sheets and Strips

  • Mofidi, Amir;Chaallal, Omar
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.117-128
    • /
    • 2014
  • Numerous investigations of RC beams strengthened in shear with externally-bonded (EB) fibre-reinforced polymer (FRP) sheets, plates and strips have been successfully conducted in recent years. These valuable studies have highlighted a number of influencing parameters that are not captured by the design guidelines. The objective of this study was: (1) to highlight experimentally and analytically the influential parameters on the shear contribution of FRP to RC beams strengthened in shear using EB FRP sheets and strips; and (2) to develop a set of transparent, coherent, and evolutionary design equations to calculate the shear resistance of RC beams strengthened in shear. In the experimental part of this study, 12 tests were performed on 4,520-mm-long T-beams. The specimens were strengthened in shear using carbon FRP (CFRP) strips and sheets. The test variables were: (1) the presence or absence of internal transverse-steel reinforcement; (2) use of FRP sheets versus FRP strips; and (3) the axial rigidity of the EB FRP reinforcement. In the analytical part of this study, new design equations were proposed to consider the effect of transverse-steel in addition to other influential parameters on the shear contribution of FRP. The accuracy of the proposed equations has been verified in this study by predicting the FRP shear contribution of experimentally tested RC beams.