• 제목/요약/키워드: CFRP sheets

검색결과 139건 처리시간 0.023초

A study on the seismic behavior of Reinforced Concrete (RC) wall piers strengthened with CFRP sheets: A pushover analysis approach

  • Fatemeh Zahiri;Ali Kheyroddin;Majid Gholhaki
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.419-437
    • /
    • 2023
  • The use of reinforced concrete (RC) shear walls (SW) as an efficient lateral load-carrying system has gained recent attention. However, creating openings in RC shear walls is unavoidable due to architectural requirements. This reduces the walls' strength and stiffness, resulting in the development of wall piers. In this study, the cyclic behavior of RC shear walls with openings, reinforced with carbon fiber reinforced polymer (CFRP) sheets in various patterns, was numerically investigated. Finite element analysis (FEA) using ABAQUS software was employed. Additionally, the retrofitting of sub-standard buildings (5, 10, and 15-story structures) designed based on the old and new versions of the Iranian Code of Practice for Seismic-Resistant Structures was evaluated. Nonlinear static analyses, specifically pushover analyses, were conducted on the structures. The best pattern of CFRP wrapping was determined and utilized for retrofitting the sub-standard structures. Various structural parameters, such as load-carrying capacity, ductility, stress contours, and tension damage contours, were compared to assess the efficiency of the retrofit solution. The results indicated that the load-carrying capacity of the sub-standard structures was lower than that of standard ones by 57%, 69%, and 67% for 5, 10, and 15-story buildings, respectively. However, the retrofit solution utilizing CFRP showed promising results, enhancing the capacity by 10-25%. The retrofitted structures demonstrated increased yield strength, ultimate strength, and ductility through CFRP wrapping and effectively prevented wall slipping.

탄소섬유판으로 보강된 RC보의 휨 거동 (Flexural Behavior of RC Beams Strengthened with CFRP Strips)

  • 최기선;유영찬;박영환;박종섭;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.287-290
    • /
    • 2005
  • CFRP strips manufactured in factory are produced normally with smaller width and larger thickness than CFRP sheets. By this reason, bonding force between CFRP strips and concrete substrate is not sufficient to sustain tensile force in CFRP strips. Therefore premature debonding failure cannot be avoided when strengthening is done by simply bonding the CFRP strips. The flexural strength of RC beam strengthened with CFRP strips must be calculated based on the effective strain considering debonding failure. This paper presents test results of an experimental study conducted to evaluate the flexural strength on RC beams strengthened with CFRP strips. 7 specimens were tested with respect to bond length and amount of CFRP strips. From the test results, it was indicated that the strain of the CFRP strips achieved at debonding failure can be decreased less than 6,000$\mu$ depending on the amount of CFRP strips.

  • PDF

탄소섬유쉬트로 보강된 RC보의 휨 부착성능에 관한 실험적 연구 (An Experimental Study on Flexural Adhesive Performance of RC Beams Strengthened by Carbon Fiber Sheets)

  • 최기선;류화성;최근도;이한승;유영찬;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.997-1002
    • /
    • 2001
  • Tensile strength of CFRP (Carbon Fiber Reinforced Polymer) is approximately 10 times higher than that steel reinforcement, but the design strength of CFRP is normally reduced by the bond failure between RC and CFRP. Many researches have been carried out, concerned with bond behavior between RC and CFRP to prevent the unpredicted bond failure of RC beam strengthened by CFRP, but the national design code for design bond strength of CFRP hasn't been constructed. In this study, 3 beams specimen strengthened by CFRP under the variable of bonded length were tested to derive the design bond strength of CFRP to the RC flexural members. Also 2 beams specimen strengthened by CFRP were tested to inspect the construction environment effects such as mixing error of epoxy resin and the amount of primer epoxy resin. From the test results, It is concluded that the maximum design bond strength of CFRP to RC flexural member is considered to be $\tau_{a}$=8kgf/$cm^{2}$.

  • PDF

Experimental investigations and FE simulation of exterior BCJs retrofitted with CFRP fabric

  • Halahla, Abdulsamee M.;Rahman, Muhammad K.;Al-Gadhib, Ali H.;Al-Osta, Mohammed A.;Baluch, Mohammed H.
    • Earthquakes and Structures
    • /
    • 제17권4호
    • /
    • pp.337-354
    • /
    • 2019
  • This paper presents the results of experimental and numerical studies conducted to investigate the behavior of exterior reinforced concrete beam column joints (BCJ) strengthened by using carbon fiber reinforced polymer (CFRP) sheets. Twelve reinforced concrete beam-column joints (BCJ) were tested in an experimental program by simulating the joints in seismically deficient old buildings. One group of BCJs was designed to fail in flexure at the BCJ interface, and the second group was designed to ensure joint shear failure. One specimen in each set was -retrofitted with CFRP sheet wrapped diagonally around the joint. The specimens were subjected to both monotonic and cyclic loading up to failure. 3D finite element simulation of the BCJs tested in the experimental program was carried out using the software ABAQUS, adopting the damage plasticity model (CDP) for concrete. The experimental results showed that retrofitting of the shear deficient, BCJs by CFRP sheets enhanced the strength and ductility and the failure mode changed from shear failure in the joints to the desired flexural failure in the beam segment. The FE simulation of BCJs showed a good agreement with the experimental results, which indicated that the CDP model could be used to model the problems of the monotonic and cyclic loading of beam-column reinforced concrete joints.

철계 형상기억합금 스트립으로 보강된 콘크리트 기둥의 반복이력거동 평가 (Hysteretic Behavior Evaluation of Reinforced Concrete Columns Retrofitted with Iron-based Shape Memory Alloy Strips)

  • 정새벽;정동혁
    • 한국전산구조공학회논문집
    • /
    • 제35권5호
    • /
    • pp.287-297
    • /
    • 2022
  • 본 논문에서는 철계형상기억합금(Fe SMA) 스트립으로 능동구속된 콘크리트 기둥의 실험적, 해석적 연구결과를 제시한다. Fe SMA과 탄소섬유보강시트(CFRP)로 각각 구속된 콘크리트 공시체의 압축실험을 통해 형상기억합금 기반 능동구속기법의 효과성을 평가하였다. 실험결과, Fe SMA 스트립으로 구속된 콘크리트 공시체가 낮은 구속력에도 불구하고 CFRP 시트로 구속된 공시체에 비해 더 우수한 변형능력을 가지는 것으로 밝혀졌다. 실험을 통해 얻은 구속된 콘크리트의 압축거동 결과를 이용해 소성힌지 영역이 각각 Fe SMA 스트립과 CFRP 시트로 보강된 콘크리트 기둥의 유한요소모델을 구축하였다. 기존 수행된 콘크리트 기둥의 수평반복가력 실험결과를 바탕으로 구축된 기둥 모델을 검증하였고, 각각의 기둥 모델에 대한 수평반복가력 해석을 수행하였다. 해석결과, Fe SMA 스트립으로 보강된 콘크리트 기둥이 CFRP 시트로 보강된 기둥모델에 비해 변형, 에너지 소산능력 향상에 효과적임을 확인하였다.

Analytical model for CFRP strengthened circular RC column under elevated temperature

  • Rashid, Raizal S.M.;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • 제13권4호
    • /
    • pp.517-529
    • /
    • 2014
  • In order to increase the load carrying capacity and/or increase the service life of existing circular reinforced concrete bridge columns, Carbon Fiber Reinforced Polymer (CFRP) composites could be utilized. Transverse wrapping of circular concrete columns with CFRP sheets increases its axial and shear strengths. In addition, it provides good confinement to the concrete column core, which enhances the bending and compressive strength, as well as, ductility. Several experimental and analytical studies have been conducted on CFRP strengthened concrete cylinders/columns. However, there seem to be lack of thorough investigation of the effect of elevated temperatures on the response of CFRP strengthened circular concrete columns. A concrete confinement model that reflects the effects of elevated temperature on the mechanical properties of CFRP composites, and the efficiency of CFRP in strengthened concrete columns is presented. Tensile strength and modulus of CFRP under hot conditions and their effects on the concrete confinement are the primary parameters that were investigated. A modified concrete confinement model is developed and presented.

탄소섬유쉬트(CFRP Sheets)로 보강된 각형강관(HSS)기둥의 유한요소해석 연구 (A Study on Finite Element Methods for HSS(Hollow Square Section) Steel Columns Strengthened with Carbon Fiber Reinforced Polymer Plastic(CFRP) Sheets)

  • 박재우;유정한
    • 한국강구조학회 논문집
    • /
    • 제28권3호
    • /
    • pp.185-194
    • /
    • 2016
  • 본 연구에서는 탄소섬유쉬트로 보강된 각형강관 기둥의 유한요소 해석결과를 소개하고 있다. 실험체 개수는 총 6개이며, 각형강관에 대해서는 비조밀 단면 단주, 세장판 단면 단주, 비조밀 단면 장주로 구성되어 있다. 실험변수는 탄소섬유쉬트 보강겹수이다. AFRP 스트립과 강재사이의 부착거동과 부착응력-슬립관계를 규명하였다. 총 6개의 실험체에 대하여 ANSYS V.14.0을 사용하여 유한요소해석을 수행하였으며, 파괴모드, 하중-변위곡선, 최대내력, 초기강성에 대해 실험결과와 비교하였다. 끝으로, AISC cold-formed steel structures 기준에 근거하여 세장비에 따른 좌굴응력값을 산정하였으며, 각 단면타입에 대한 좌굴응력값 및 보강효과를 비교하였다.

Strength model for square concrete columns confined by external CFRP sheets

  • Benzaid, Riad;Mesbah, Habib Abdelhak
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.111-135
    • /
    • 2013
  • An experimental study has been carried out on square plain concrete (PC) and reinforced concrete (RC) columns strengthened with carbon fiber-reinforced polymer (CFRP) sheets. A total of 78 specimens were loaded to failure in axial compression and investigated in both axial and transverse directions. Slenderness of the columns, number of wrap layers and concrete strength were the test parameters. Compressive stress, axial and hoop strains were recorded to evaluate the stress-strain relationship, ultimate strength and ductility of the specimens. Results clearly demonstrate that composite wrapping can enhance the structural performance of square columns in terms of both maximum strength and ductility. On the basis of the effective lateral confining pressure of composite jacket and the effective FRP strain coefficient, new peak stress equations were proposed to predict the axial strength and corresponding strain of FRP-confined square concrete columns. This model incorporates the effect of the effective circumferential FRP failure strain and the effect of the effective lateral confining pressure. The results show that the predictions of the model agree well with the test data.

강판 또는 탄소섬유시트 보강된 수평 구조 부재의 안전성 평가시 고려사항 (Considerations in the Safety Evaluation of the Lateral Structural Members Reinforced with Steel Plate or CFRP Sheet)

  • 강석원;박형철;오보환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.331-334
    • /
    • 2003
  • Since regulation or specification for the reinforcing method are quite ambiguous, structural design for the reinforcement can be subjectively and arbitrarily conducted. Thus, reasonable limitation and guide for the quantity of the reinforcement are required for the safe use of the structure after repair. In order to guarantee the safety of the structural member several items should be considered; reinforcing limit to avoid the brittle failure, least required strength of the existing member before reinforcement in order not to fail under the new serviceability load condition when reinforcing steel plates or CFRP sheets are harmed or subjected to fire.

  • PDF

탄소섬유시트로 보강된 콘크리트 구조물 경계면 재료의 크리프 영향 해석 (A Study for Creep Effect of the Interfacial Adhesive Layer on the Behavior of Concrete with CFRP)

  • 박용득;신승교;강석화;임윤묵
    • 대한토목학회논문집
    • /
    • 제30권3A호
    • /
    • pp.221-228
    • /
    • 2010
  • 탄소섬유시트 보강공법은 열화 손상된 콘크리트 구조물의 보강에 가장 많이 사용되는 보강공법 중 하나이다. 탄소섬유시트 보강공법은 에폭시접착제를 사용하여 탄소섬유시트를 콘크리트의 외부에 부착하는 보강공법으로 탄소섬유시트에 의한 휨보강이 에폭시 접착 경계면을 통하여 콘크리트로 전달된다. 따라서 사용기간이 경과함에 따라 에폭시 접착 경계면에 발생하는 크리프 등의 시간의존적 거동은 보강효과를 감소시키는 요인이 된다. 본 연구에서는 경계면에서 발생하는 크리프 영향을 해석하기 위하여 콘크리트의 크리프 거동에 대한 기존의 연구들을 고찰하고, 이를 바탕으로 에폭시 접착 경계면의 크리프 영향을 예측할 수 있는 이론적인 연구를 수행하였다. 제안된 유한요소해석기법은 기존의 콘크리트 크리프 거동 분석을 위해 사용되던 유변모델을 에폭시 접착 경계면에 적용한 것으로 기존 실험결과와 비교를 통하여 타당성을 검증하였다. 또한, 제안된 유한요소해석을 통하여 탄소섬유시트로 보강된 콘크리트 구조물의 시간의존적 거동에 경계면 재료의 크리프 영향을 반드시 고려해야 한다는 것을 입증하였다.