• Title/Summary/Keyword: CFRP plate

Search Result 166, Processing Time 0.038 seconds

Prediction of Fatigue Life for Hole-notched Weave CFRP Plate (평직 CFRP 홀 노치재의 피로 수명 예측)

  • Kim, Sang-Young;Kim, Yong-Seok;Kwon, Hee-Whan;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.1-6
    • /
    • 2010
  • Recently, CFRP composite is more and more used in the various fields because of a higher specific modulus, chemical property and so on. Most products using CFRP composite are manufactured by construction of components. Various components are joined with those by bolts and pins. Holes for bolts and pins decrease strength and fatigue life of components, because those act as notch in structures. In this paper, we experimentally evaluated the fatigue life of hole-notched and unnotched weave CFRP plate. Then, we compared the two results and proposed an equation for prediction of fatigue life.

Analysis of the Flexural Strength of Reinforced Concrete Beams Strengthened with Prestressed Carbon Fiber-Reinforced Polymer Plates (CFRP판으로 프리스트레싱 보강된 RC 보의 휨강도 해석)

  • Woo, Sang-Kyun;Hong, Ki-Nam;Han, Sang-Hoon;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.181-192
    • /
    • 2007
  • The purpose of this study is to analyse and compare experimentally flexural behavior of RC beams strengthened with CFRP plates by different methods, and finally suggest the evaluation equations of flexural capacity of RC beams with the aim of application of prestressed CFRP strengthening. The experimental parameters are compressive strength, reinforcement ratio, prestressing level and strengthening methods. The non-prestressed specimens failed on account of separation of the plates from the beams due to premature de-bonding, while most of the prestressed specimens failed due to CFRP plate fracture. The evaluation equations of flexural capacity of RC beams is suggested and these equations have a good reliability in predicting flexural strength of RC beams.

Utilizing CFRP and steel plates for repair of damaged RC beams with circular web openings

  • Fayyadh, Moatasem M.;Abed, Mohammed J.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.49-61
    • /
    • 2022
  • This paper presents an experimental investigation into the effectiveness of using carbon fibre reinforced polymer (CFRP) and steel plates to repair damaged reinforced concrete (RC) beams with circular web openings at shear zones. It highlights the effectiveness of externally bonded CFRP and steel plates in repairing damaged RC beams by analysing the repaired beams'load capacity, deflection, strain, and failure mode. For the experiment, a total of five beams were used, with one solid beam as a control beam and the other four beams having an opening near the shear zone. Two beams with openings were repaired using inclined and vertical configuration CFRP plates, and the other two were repaired using inclined and vertical configuration steel plates. The results confirm the effectiveness of CFRP and steel plates for repairing damaged RC beams with circular openings. The CFRP and steel plates significantly increase ultimate capacity and reduce deflection under the openings. The inclined configuration of both CFRP and steel plates was more effective than the vertical configuration. Using an inclined configuration not only increases the ultimate capacity of the beams but also changes the mode of failure from shear to flexural.

A Study on the Improvement Buckling Strength of Laminated Composite Plate by Taguchi Method (다구찌법을 이용한 복합적층판의 좌굴강도 개선에 관한 연구)

  • 구경민;홍도관;김동영;박일수;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1362-1365
    • /
    • 2003
  • On this study. we improved the efficiency applying algorithm that is repeatedly using orthogonal array in discrete design space and filling a defect of gradient method in continuous design space. we showed optimal ply angle that maximized buckling strength of CFRP laminated composite plate without a hole and with a hole by each aspect ratio. In the case of CFRP laminated composite plate without a hole, we confirmed the reliance and efficiency of algorithm in comparison with the result optimization achievement repeatedly using statistical orthogonal array of experimental design.

  • PDF

Optimal Ply Design of Laminated Composite Cantilever plate Considering Vibration (진동을 고려한 복합적층 외팔평판의 최적적층설계)

  • Gu, K.M.;Noh, Y.H.;Kim, D.Y.;Hong, D.K.;Ahn, C.W.;Han, G.J.;Park, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1660-1665
    • /
    • 2003
  • On this study, we improved the efficiency applying algorithm that is repeatedly using orthogonal array in discrete design space and filling a defect of gradient method in continuous design space. we showed optimal ply angle that maximized 1st natural frequency of CFRP laminated composite cantilever plate by each aspect ratio. A finite element analysis on the CFRP laminated composite cantilever plate using orthogonal array is carried out, and the results are compared with those obtained by modal testing.

  • PDF

Optimal Ply Design of Laminated Composite Plate with a Hole Considering Vibration (진동을 고려한 원공복합적층판의 최적적층설계)

  • 홍도관;김동영;최경호;안찬우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.423-429
    • /
    • 2003
  • On this study. we improved the efficiency applying algorithm that is repeatedly using table of orthogonal array in discrete design space and filling a defect of gradient method in continuous design space. we showed optimal ply angle that maximized 1st natural frequency of CFRP laminated composite plate without a hole and with a hole by each aspect ratio. In the case of CFRP laminated composite plate without a hole, we confirmed the reliance and efficiency of algorithm in comparison with the result of optimization achievement repeatedly using statistical table of orthogonal array of experimental design and the BFGS optimal design method.

An Experimental Study on the Strengtheing Effect of Reinforced Concrete Beams Strengthened by CFRP Rod (탄소섬유막대로 보강한 철근콘크리트 보의 보강효과에 관한 실험적 연구)

  • Park, Sung-Moo;Kim, Jae-Hun;Park, Kwang-Seob
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.85-91
    • /
    • 2004
  • Rehabilitations of reinforced concrete(RC) structures using advanced fibre-reinfored plastic(FRP) composites has become very popular in last few years. Typical method of strengthening strategy using FRP composite is bonding the CFRP plate or sheet on the surface of existing concrete structures. Many researches, however, have shown that bonding FRP plate or sheet on the surface of concrete has tendancy to debond prematurely induced by stress concentrations at the end of the plate. In order for overcoming the premature failure, the filling-up method which places FRP-rod into the existing concrete sawing groove has been developed. Through filling-up test results, aims of this research is to investigate the efficiencies of the filling-up method and is to determine the availabilities of traditional flexural theories that has provided all over the world.

  • PDF

Performance of steel beams strengthened with pultruded CFRP plate under various exposures

  • Gholami, M.;Sam, A.R. Mohd;Marsono, A.K.;Tahir, M.M.;Faridmehr, I.
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.999-1022
    • /
    • 2016
  • The use of Carbon Fiber Reinforced Polymer (CFRP) to strengthen steel structures has attracted the attention of researchers greatly. Previous studies demonstrated bonding of CFRP plates to the steel sections has been a successful method to increase the mechanical properties. However, the main limitation to popular use of steel/CFRP strengthening system is the concern on durability of bonding between steel and CFRP in various environmental conditions. The paper evaluates the performance of I-section steel beams strengthened with pultruded CFRP plate on the bottom flange after exposure to diverse conditions including natural tropical climate, wet/dry cycles, plain water, salt water and acidic solution. Four-point bending tests were performed at specific intervals and the mechanical properties were compared to the control beam. Besides, the ductility of the strengthened beams and distribution of shear stress in adhesive layer were investigated thoroughly. The study found the adhesive layer was the critical part and the performance of the system related directly to its behavior. The highest strength degradation was observed for the beams immersed in salt water around 18% after 8 months exposure. Besides, the ductility of all strengthened beams increased after exposure. A theoretical procedure was employed to model the degradation of epoxy adhesive.

Debonding Failure Model for RC Beams Strengthened with Externally Bonded Prestressed CFRP Plates (탄소섬유판 긴장재로 외부 긴장 보강된 철근콘크리트 보의 부착파괴 모델)

  • Park, Jong Sup;Jung, Woo Tai;Park, Young Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.447-456
    • /
    • 2008
  • This paper suggests a modified debonding failure model for the externally bonded prestressed CFRP plate strengthening system. In order to reduce the error that may occur in the experimental results, statistical analysis of the experimental results produced by previous researchers was conducted to propose a debonding failure model. The experimental results of beams strengthened with bonded CFRP plates have made it possible to verify the debonding failure occurring before the final failure in the prestressing system. The corresponding strain increased with the effective prestress. Accordingly, the debonding failure model was modified by considering the effective prestress so as to fit with the CFRP prestressing system.

An Analysis of Design Parameters and Optimal Design for Anchors with Wide CFRP Plate (대형 CFRP Plate용 정착구의 설계요소분석 및 최적설계)

  • Kim, Hyung-Joon;Chung, Heung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.102-112
    • /
    • 2020
  • In this study, in order to design a wedge-type anchor that can hold an wide carbon plate with a width of 100 mm or more that can be used in a bridge structure, the mechanical behaviors are evaluated based on the main design variables such as the angle of the wedge and the coefficient of friction between the guide and the wedge. The stress state of the carbon plate was calculated by numerical analysis method for each design variable, and the performance of the anchor in the critical state was evaluated according to the failure criteria for composite material, and the optimal design specifications of the anchor were determined based on numerical results. The performance of the optimally designed anchor was verified through actual experiments, and the results of this study are considered to be useful for the optimal design of the CFRP plate anchor to reinforce large structures.