• Title/Summary/Keyword: CFRP(carbon fiber reinforced polymer)

Search Result 260, Processing Time 0.03 seconds

Design modification and structural behavior study of a CFRP star sensor baffle

  • Vinyas, M.;Vishwas, M.;Venkatesha, C.S.;Rao, G. Srinivasa
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.427-445
    • /
    • 2016
  • Star sensors are the attitude estimation sensors of the satellite orbiting in its path. It gives information to the control station on the earth about where the satellite is heading towards. It captures the images of a predetermined reference star. By comparing this image with that of the one captured from the earth, exact position of the satellite is determined. In the process of imaging, stray lights are eliminated from reaching the optic lens by the mechanical enclosures of the star sensors called Baffles. Research in space domain in the last few years is mainly focused on increased payload capacity and reduction in launch cost. In this paper, a star sensor baffle made of Aluminium is considered for the study. In order to minimize the component weight, material wastage and to improve the structural performance, an alternate material to Aluminium is investigated. Carbon Fiber Reinforced Polymer is found to be a better substitute in this regard. Design optimisation studies are carried out by adopting suitable design modifications like implementing an additional L-shaped flange, Upward flange projections, downward flange projections etc. A better configuration of the baffle, satisfying the design requirements and achieving manufacturing feasibility is attained. Geometrical modeling of the baffle is done by using UNIGRAPHICS-Nx7.5(R). Structural behavior of the baffle is analysed by FE analysis such as normal mode analysis, linear static analysis, and linear buckling analysis using MSC/PATRAN(R), MSC-NASTRAN(R) as the solver to validate the stiffness, strength and stability requirements respectively. Effect of the layup sequence and the fiber orientation angle of the composite layup on the stiffness are also studied.

Performance evaluation of different strengthening measures for exterior RC beam-column joints under opening moments

  • Dar, M. Adil;Subramanian, N.;Pande, Sumeet;Dar, A.R.;Raju, J.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.243-254
    • /
    • 2020
  • Devastating RC structural failures in the past have identified that the behavior of beam-column joints is more critical and significantly governs the global structural response under seismic loading. The congestion of reinforcement at the beam-column joints with other constructional difficulties has escalated the attention required for strengthening RC beam-column joints. In this context, numerous studies have been carried out in the past, which mainly focused on jacketing the joints with different materials. However, there is no comparative study of different approaches used to strengthen RC beam-column joints, from efficiency and cost perspective. This paper presents a detailed investigation carried out to study the various strengthening schemes of exterior RC beam-column joints, viz., steel fiber reinforcement, carbon fiber reinforced polymer (CFRP) strengthening, steel haunch strengthening, and confining joint reinforcement. The effectiveness of each scheme was evaluated experimentally. These specimens were tested under horizontal loading that produced opening moments on the joints and their behavior was studied with emphasis on strength, displacement ductility, stiffness, and failure mechanism. Special attention was given to the study of crack-width.

An Experimental Study on Bond Characteristics of FRP Reinforcements with Various Surface-type (다양한 표면형상에 따른 FRP 보강재의 부착특성 실험연구)

  • Jung, Woo Tai;Park, Young Hwan;Park, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.279-286
    • /
    • 2011
  • FRP (Fiber Reinforced Polymer) tendons can be used as an alternative to solve the corrosion problem of steel tendons. Material properties of FRP tendons-bond strength, transfer length, development length-must be determined in order to apply to concrete structures. First of all, in case of application for pretension concrete members with CFRP tendons, transfer length is an important characteristic. The bond of the material characteristics should be demanded clearly to apply to PSC structures prestressed with FRP tendons. This paper investigated on the bond characteristics of FRP reinforcements with various surface-type. To determine the bond characteristics of FRP materials used in place of steel reinforcement or prestressing tendon in concrete, pull-out testing suggested by CAN/CSA S806-02 was performed. A total of 40 specimens were made of concrete cube with steel strands, deformed steel bar and 6 different surface shape FRP materials like carbon or E-glass. Results of the bonding tests presented that each specimen showed various behaviors as the bond stress-slip curve and compared with the bond characteristic of CFRP tendon developed in Korea.

Performance evaluation of RC piers repaired by CFRP (CFRP로 보수된 RC 교각의 내진성능 평가)

  • Lee, Do-Hyung;Jeon, Jeong-Moon;Cho, Kyu-Sang;Kim, Yong-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.85-88
    • /
    • 2008
  • Performance evaluation of RC bridge piers repaired by CFRP has been investigated. For this purpose, simplified CFRP stress-strain relationship has been proposed and use is made of inelastic time-dependent element developed by authors. Static time-history analysis has been carried out for a RC bridge pier repaired with CFRP. Analytical predictions shows a relatively good correlation with experimental results. In addition, in case of dynamic time-history analysis, effect of the CFRP repair intervention on shear has been evaluated. Comparative analysis reveals that a repaired member produces increased characteristics due to the repair intervention and may affect the overall response of a whole structure. Moreover, effect of shear significantly affect strength, stiffness and displacement response of the pier. In all, It is believed that the present analytical model and scheme enable a healthy evaluation of strength, stiffness and displacement capacities of a RC bridge pier being damaged and repaired.

  • PDF

Conductivity Evaluation of a Newly Proposed Material for a SAR Reflector Antenna

  • Yoon, Seong Sik;Lee, Jae Wook;Lee, Taek Kyung;Roh, Jin Ho;Kim, Hark Inn;Yi, Dong Woo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.3
    • /
    • pp.293-298
    • /
    • 2014
  • Large spaceborne antennas should be lightweight, a factor related to the development costs of launch vehicles. In order to overcome this drawback, a feasibility study of a new carbon fiber reinforced polymer (CFRP) named M55J/RS3 is carried out for a synthetic aperture radar (SAR) reflector antenna. In particular, the high resolution of detected images is taken into consideration. To validate the electrical performance, a test of the CFRP specimen is fabricated, and the transmission/reflection coefficients are measured using a standard X-band waveguide. Finally, the effective complex permittivity and effective electrical conductivity are derived from the obtained measured data. By applying the derived conductivity to the simulation of the radiation pattern, antenna gain, and beamwidth-instead of relying on the assumption of a perfect electric conductor-variations in electrical performance are also investigated and discussed.

Study on Fastened Properties by Applied to CFRP Laminates of Subminiature Screw (초소형나사의 CFRP 적층판 적용에 따른 체결특성에 관한 연구)

  • Choi, Byung Hui;Kim, Ho Joong;Kim, Ji Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1239-1243
    • /
    • 2014
  • This paper presents the application of carbon-fiber-reinforced polymer (CFRP) for the damage absorption and optimal design of portable smart devices to close in life. CFRP specimens are subjected to a tensile test to estimate their mechanical properties in terms of the stacking angles. Further, the screw reverse torque and screw torque at each stacking angle are determined using a torque tester after tapping holes on the CFRP specimens. Two experiments are performed for comparing their results in order to determine optimal conditions. In the tensile test, a woven specimen is found to have the highest strength and stiffness. In the case of the woven specimen, no difference is observed even when it is applied to prevent loosening of the coating. And average result value was excellent.

Post-tensioning System with Externally Bonded CFRP Strips for Strengthening RC Members (RC 부재의 휨 보강을 위한 외부 부착형 탄소섬유판 포스트텐션 시스템)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.155-163
    • /
    • 2008
  • Experimental study has been performed in order to investigate the behavior of RC beams strengthened with externally bonded post-tensioned CFRP (Carbon Fiber Reinforced Polymer) strips. Specimens consist of 9 small-scaled specimens with the different post-tensioning level as a main test parameter. A control specimen and specimens with simply bonded CFRP strips have been manufactured to compare the structural performances of prestressed system. From the test results, it was observed that the specimens strengthened with simply bonded CFRP strips showed debonding failure below 50% of CFRP tensile strength due to premature debonding. On the other hand, all the specimens strengthened with post- tensioned CFRP strips reached the rupture strength of the CFRP strip. The cracking and yielding loads were also increased proportionally to the post-tensioning level, but the ultimate loads were nearly equal regardless of the post-tensioning level.

Post-tensioning System with Externally Unbonded CFRP Strips for Strengthening RC Members (RC 부재의 휨 보강을 위한 외부 비부착형 탄소섬유판 포스트텐션 시스템)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.147-154
    • /
    • 2008
  • Experimental study has been performed in order to investigate the behavior of RC beams strengthened with externally unbonded post-tensioned CFRP (Carbon Fiber Reinforced Polymer) strips using embedded or stud-type plate anchorages. Total 10 small-scaled specimens were manufactured with the different post-tensioning level and types of mechanical anchorage as a main test parameter. A control specimen and specimens with simply bonded CFRP strips were included to compare the structural performances of each system. From the test results, it was observed that the specimens strengthened with simply bonded CFRP strips showed debonding failure below 50% of CFRP tensile strength due to premature debonding. On the other hand, all the specimens strengthened with post- tensioned unbonded CFRP strips reached the rupture strength of the CFRP strip. Also, it was observed that the specimens with stud-type anchorage have equivalent strengthening performance compared with embedded-type anchorage.

A Study for Creep Effect of the Interfacial Adhesive Layer on the Behavior of Concrete with CFRP (탄소섬유시트로 보강된 콘크리트 구조물 경계면 재료의 크리프 영향 해석)

  • Park, Yong Deuk;Shin, Seung Kyo;Kang, Suk Hwa;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.221-228
    • /
    • 2010
  • External bonding of carbon fiber reinforced polymer (CFRP) sheets has been widely accepted as a popular method for strengthening of deteriorated RC structures. The long-term behavior of CFRP-strengthened RC structure is often affected by that of the interface between CFRP sheets and concrete. This study aims at applying a viscoelastic model to describe the creep behaviour of the adhesive layer bonding CFRP sheet to concrete, the CFRP-concrete interface. Reviews of available models on concrete creep behavior have been first carried out and then new FE analysis model is proposed. The proposed FE analysis model based on the maxwell model has been verified by previous experimental results. It is shown that the creep effect of interfacial adhesive layer is very important on the long-term behavior of concrete structures strengthened with CFRP.

Damage detection of reinforced concrete columns retrofitted with FRP jackets by using PZT sensors

  • Tzoura, Efi A.;Triantafillou, Thanasis C.;Providakis, Costas;Tsantilis, Aristomenis;Papanicolaou, Corina G.;Karabalis, Dimitris L.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.165-180
    • /
    • 2015
  • In this paper lead zirconate titanate transducers (PZT) are employed for damage detection of four reinforced concrete (RC) column specimens retrofitted with carbon fiber reinforced polymer (CFRP) jackets. A major disadvantage of FRP jacketing in RC members is the inability to inspect visually if the concrete substrate is damaged and in such case to estimate the extent of damage. The parameter measured during uniaxial compression tests at random times for known strain values is the real part of the complex number of the Electromechanical Admittance (Conductance) of the sensors, obtained by a PXI platform. The transducers are placed in specific positions along the height of the columns for detecting the damage in different positions and carrying out conclusions for the variation of the Conductance in relation to the position the failure occurred. The quantification of the damage at the concrete substrate is achieved with the use of the root-mean-square-deviation (RMSD) index, which is evaluated for the corresponding strain values. The experimental results provide evidence that PZT transducers are sensitive to damage detection from an early stage of the experiment and that the use of PZT sensors for monitoring and detecting the damage of FRP-retrofitted reinforced concrete members, by using the Electromechanical Admittance (EMA) approach, can be a highly promising method.