• Title/Summary/Keyword: CFD technique

Search Result 423, Processing Time 0.024 seconds

Numerical analysis of the blood flow in coronary artery combining CFD method with the vascular system modeling (혈관계 시스템 모델과 CFD의 결합을 통한 관상동맥 내 혈류의 수치적 해석)

  • Shim Eun Bo;Park Myung Soo;Ko Hyung Jong;Kim Kyung Moon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.152-157
    • /
    • 1999
  • For the simulation of the blood flow in coronary artery, the system modeling of coronary hemodynamics is combined with CFD technique. The blood flow in coronary artery interacts with the global coronary circulation. Especially in case of the coronary artery with stenosis, the interaction plays an important role in the hemodynamics of the circulation. In this study we present a combined numerical approach using both the CFD technique for flow simulation and the global system model of coronary circulation. We use a lumped parameter model for the global simulation of coronary circulation whereas the finite element method is employed to compute the viscous flow field in stenosed coronary artery, The time variation of the pressure drop due to stenosis is obtained from the proposed numerical method. Numerical results shows that the flow resistance and pressure drop due to stenosis has a relatively large value in systole.

  • PDF

A Methodology for Determination of the Safety Distance in Chemical Plants using CFD Modeling (CFD 모델링을 이용한 화학공장의 안전거리 산정 방법론에 관한 연구)

  • Baek, Ju-Hong;Lee, Hyang-Jig;Jang, Chang Bong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.162-167
    • /
    • 2016
  • As the simple empirical and phenomenological model applied to the analysis of leakage and explosion of chemical substances does not regard numerous variables, such as positional density of installations and equipment, turbulence, atmospheric conditions, obstacles, and wind effects, there is a significant gap between actual accident consequence and computation. Therefore, the risk management of a chemical plant based on such a computation surely has low reliability. Since a process plant is required to have outcomes more similar to the actual outcomes to secure highly reliable safety, this study was designed to apply the CFD (computational fluid dynamics) simulation technique to analyze a virtual prediction under numerous variables of leakages and explosions very similarly to reality, in order to review the computation technique of the practical safety distance at a process plant.

Application of Store Separation Wind Tunnel Test Technique into CFD (외장분리 풍동시험 기법의 전산유체해석 적용)

  • Son, Chang-Hyeon;Kim, Sang-Hun;Woo, Heekyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.263-272
    • /
    • 2021
  • In this study, aerodynamic coefficients obtained from Computational Fluid Dynamics (CFD) using wind tunnel test-like method is compared with coefficients obtained by actual wind tunnel test. Unsteady analysis has performed with using harmonic equation for motion of the external store. Aerodynamic database is generated based on CFD results to simulate 6 degree-of-freedom store separation analysis. Trajectory is obtained from simulation using both CFD-based and test-based database, and results are compared with trajectory from flight test result. It is concluded that generation of database based on CFD with wind tunnel test technique is valid from good agreement of the trajectory.

Evaluation of the Effect of Sedimentation Basin Structure on Hydrodynamic Behavior Using CFD (II): The Effect of Trough (CFD를 이용한 침전지 구조가 수리거동에 미치는 영향 평가(II): 트라프의 영향 중심으로)

  • Park, No-Suk;Lim, Jae-Lim;Lee, Sun-Ju;Kwon, Soon-Bum;Min, Jin-Hui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.758-766
    • /
    • 2005
  • This study was conducted to evaluate the effect of the transverse troughs on hydrodynamic behavior within the a certain full-scale sedimentation basin (flow rate/one basin; $10,000m^3/d$) using CFD simulation and ADV technique. In order to verify the CFD simulation, we measured the factual velocity at 36 points in the full-scale sedimentation basin, whose outlet structure is inadequate, with ADV technique. Both the CFD simulation and the ADV measurement results were in good accordance with each other. From the CFD simulation results of the existing basin, it was investigated that extreme upward flow occurs in the near of two transverse troughs. It was suspected that since the transverse troughs converted the open channel flow into the local closed pipe flow, the increased pressure in this local closed pipe flow region made the extreme upward flow. For solving this problems, it was suggested to modify transverse-typed launder into finger-typed launder and to install a longitudinal baffle in the center in this study. The CFD simulation results of all suggested amendments told us that the extreme upward flow, had occurred especially in the beneath of transverse troughs, was much less in the case of finger typed launder basin than that in the existing basin. Also, it was predicted that installing a longitudinal baffle made the fully developed flow which is more effective for sedimentation.

Development of Integrated Computational Fluid Dynamics(CFD) Environment using Opensource Code (오픈소스 코드를 이용한 통합 전산유체역학 환경 구축)

  • Kang, Seunghoon;Son, Sungman;Oh, Se-Hong;Park, Wonman;Choi, Choengryul
    • Convergence Security Journal
    • /
    • v.18 no.1
    • /
    • pp.33-42
    • /
    • 2018
  • CFD analysis is an analytical technique that applies a computer to the design and development of products across the entire industry for heat or fluid flow. This technology is used to shorten the development period and reduce costs through computerized simulation. However, the software used for CFD analysis is now required to use expensive foreign software. The Opensource CFD analysis software used in the proposed system has reliability of commercial CFD analysis software and has various user groups. However, for users who have expert knowledge, Opensource CFD software which supports only text interface environment, We have developed an environment that enables the construction of a CFD analysis environment for beginners as well as professionals. In addition, the proposed system supports the pre-processing (design and meshing) environment for CFD analysis and the environment for post-processing (result analysis & visualization), enabling the integrated CFD analysis process in one platform.

  • PDF

Development of the CFD Program for the Cold Gas Flow Analysis in a High Voltage Circuit Breaker Using the CFD-CAD Integration (CFD-CAD 통합해석을 위한 초고압 차단기 내부의 냉가스 유동해석 프로그램 개발)

  • Lee, J.C.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.30-32
    • /
    • 2001
  • There are many difficult problems in analyzing the flow characteristics in a high voltage circuit breaker such as shock wave and complex geometries, which may be either static or in relative motion. Although a variety of mesh generation techniques are now available, the generation of meshes around complicated, multi-component geometries like a gas circuit breaker is still a tedious and difficult task for the computational fluid dynamics. This paper presents the CFD program for analyzing the compressible flow fields in a high voltage gas circuit breaker using the Cartesian cut-cell method based on the CFD-CAD integration, which can achieve the accurate representation of the geometry designed by a CAD tools. This technique is frequently satisfied, and it will be almost universally so in the future, as the CFD-CAD traffic increase.

  • PDF

Examining the Effect of L/W Ratio on the Hydro-dynamic Behavior in DAF System Using CFD & ADV Technique (전산유체역학과 ADV기술을 이용한 장폭비의 DAF조내 수리흐름에 미치는 영향 연구)

  • Park, No-Suk;Kwon, Soon-Bum;Lee, Sun-Ju;Bae, Chul-Ho;Kim, Jeong-Hyun;Ahn, Hyo-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.421-428
    • /
    • 2005
  • Dissolved air flotation (OAF) is a solid-liquid separation system that uses fine bubbles rising from bottom to remove particles in water. In this study, we investigated the effect of L/W (L; Length, W; Width) on the hydro-dynamic behavior in DAF system using CFD (Computational Fluid Dynamics) and ADV (Acoustic Doppler Velocimetry) technique. The factual full-scale DAF system, L/W ratio of 1:1, was selected and various L/W ratio (2:1, 3:1, 4:1 and 5:1) conditions were simulated with CFD. For modelling, 2-phase (gas-liquid) flow equations for the conservation of mass, momentum and turbulence quantities were solved using an Eulerian-Eulerian approach based on the assumption that very small particle is applied in the DAF system. Also, for verification of CFD simulation results, we measured the factual velocity at some points in the full-scale DAF system with ADV technique. Both the simulation and the measurement results were in good accordance with each other. As the results of this study, we concluded that L/W ratio and outlet geometry play important role for flow pattern and fine bubble distribution in the flotation zone. In the ratio of 1:1, the dead zone is less than those in other cases. On the other hands, in the ration of 3:1, the fine bubbles were more evenly distributed.

A Study on the Hull Form Development and Resistance Performance of a High-Speed Coastal Patrol Boat (고속 연안순시선 선형개발과 저항성능에 관한 연구)

  • 정우철;정석호;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.44-49
    • /
    • 2004
  • Initial hull form of 10 G/T and 40 knots class coastal patrol boat is newly developed. The resistance performances are experimentally and numerically investigated by model test and CFD technique. The effect of initial trim and a fin attached at hull side are studied together. Wave patterns are observed to make clear the relation between the performance and the wave characteristics. It can be found that the initial trim plays a role in increasing the resistance performance above a certain velocity, and the CFD technique can be used at the initial design stage of a high-speed planning boats.

Unsteady Separation Simulation of Missile by Using Moving Grid (움직이는 격자계를 이용한 유도탄의 비정상 분리 유동해석)

  • Kang, Kyoung-Tai;Lee, Bok-Jik;Ahn, Chang-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.47-52
    • /
    • 2007
  • Missile staging and airframe separation simulation were performed by using a numerical technique for simulating the dynamics of multiple moving bodies. A 6DOF model is fully integrated into the CFD solution procedure to determine the body dynamics. Chimera grid technique offered efficient CFD simulation of multiple moving bodies. Through this simulation the safety of deployed staging and airframe separation mechanism was verified.