• Title/Summary/Keyword: CFD numerical code

Search Result 520, Processing Time 0.026 seconds

Numerical Study of Turbulent Flow in a Hydrocyclone (하이드로사이클론 내의 난류유동해석)

  • Ju, Jong-Il;Choi, Young-Seok;Lee, Yong-Kab;Kim, Tak-Hyun;Kim, sangyong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.34-40
    • /
    • 2003
  • Numerical studies have been conducted to predict the solid-liquid separation efficiency of turbulent flow in a hydrocyclone using a commercial CFD code. To validate the CFD code, several preliminary numerical calculations are carried out to determine the influence of parameters such as grid systems, numerical schemes, and turbulence models. The numerical studies have been performed on the hydrocyclones with the different vortex finder geometries by changing the mass flow rate, and the results were compared with the experimental data. The results show that the CFD code can be used as a design tool to improve the performance of hydrocyclones.

Performance Analysis of the Centrifugal Pump Impeller Using Commercial CFD Code (상용 CFD코드를 이용한 원심펌프 임펠러의 성능해석)

  • Choi, Young-Seok;Lee, Yong-Kab;Hong, Soon-Sam;Kang, Shin-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.1 s.10
    • /
    • pp.38-45
    • /
    • 2001
  • A commercial CFD code is used to compute the 3-D viscous flow field within the impeller of a centrifugal pump. Several preliminary numerical calculations are carried out to determine the influence of the parameters such as the grid systems, the numerical schemes, the turbulence models and the shape of the vaneless diffusers at the design flow rate. The results of the preliminary study are used for the calculation of the off-design flow conditions. The circumferentially averaged results such as the radial and tangential velocities, the exit flow angle, the slip factor, the static pressure and the total pressure are compared with the experimental data at the impeller exit to discuss the influence of the prescribed parameters.

  • PDF

Performance Analysis of the Centrifugal Pump Impeller Using Commercial CFD Code (상용 CFD코드를 이용한 원심펌프 임펠러의 성능해석)

  • Choi, Young-Seok;Lee, Yong-Kab;Hong, Soon-Sam;Kang, Shin-Hyung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.305-311
    • /
    • 2000
  • A commercial CFD code is used to compute the 3-D viscous flow field within the impeller o( a centrifugal pump. Several preliminary numerical calculations are carried out to determine the influence of the parameters such as the grid systems, the numerical schemes, the turbulence models and the shape of the vaneless diffusers at the design flow rate. The results of the preliminary study are used for the calculation of the off-design flow conditions. The circumferentially averaged results such as the radial and tangential velocities, the exit flow angle, the slip factor, the static pressure and the total pressure are compared with the experimental data at the impeller exit to discuss the influence of the prescribed parameters.

  • PDF

A STUDY OF PREDICTION METHOD FOR DYNAMIC STABILITY DERIVATIVE USING STEADY STATE SIMULATION IN NON-INERTIAL COORDINATE (비관성 좌표계에서의 정상해석을 통한 동 안전 미계수 예측 기법 연구)

  • Lee, H.R.;Lee, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.428-433
    • /
    • 2011
  • In this paper, a prediction method for dynamic stability derivatives is studied using steady state simulations in rotational coordinates. The simulations require the extension of a standard CFD formulations based on inertial coordinate. A new CFD code based on the method are developed. Flows induced by steady circular motions of airfoils with a constant pitch rate are simulated with the code. From the numerical simulations, the pitch rate derivatives are obtained at various Mach numbers, and the results are compared with other numerical results. The numerical simulations show that the new code are capable of predicting dynamic stability derivatives.

  • PDF

Computation of Flow around a Container Ship with Twin-Skegs using the CFD (CFD를 이용한 쌍축 컨테이너선 주위의 유동계산)

  • Kim, Hee-Taek;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.370-378
    • /
    • 2007
  • In this study. a numerical analysis has been performed for the turbulent flow around a 15,000TEU twin-skeg container ship using a commercial CFD code. FLUENT. The computed results have been compared with the model test data from MOERI. We investigated viscous resistance coefficient. wake distribution and characteristics of the shear flow according to the grid numbers. Although the free surface is approximated by the plane of symmetry in this work. the calculated axial velocity and transverse vector show a good agreement with the MOERI experimental data except for the region of 0.9 level of axial velocity at the propeller plane. The numerical analysis show that commercial CFD code is useful tool for the evaluation of complex hull form with twin-skegs.

Inlet Shape Design of Air Handling Unit Using Commercial CFD Code (상용 CFD코드를 이용한 공조기 입구 형상 설계)

  • Choi, Young-Seok;Ju, Jong-Il;Lee, Yong-Kab;Joo, Won-Gu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.54-59
    • /
    • 2002
  • A commercial CFD code is used to compute the 3-D viscous flow field within the inlet flow concentrator of the newly developed AHU (Air Handling Unit). To improve the performance of the AHU, the inlet air needs to be gradually accelerated to the fan's annular velocity without causing turbulence or flow separation. Three major geometric parameters were selected to specify the inlet shape of the AHU. The performance of the AHU could be measured by the inlet and outlet flow uniformity and the total pressure loss through the inlet flow concentrator. Several numerical calculations were carried out to determine the influence of the geometric parameters on the performance of the AHU. The best geometric values were decided to have efficient inlet shape with analyzing CFD calculation results.

Numerical Simulation of 2-D Lid-Driven Cavity Plow at High Reynolds numbers (높은 Re수에서의 2차원 Lid-Driven 캐비티유동의 수치해석)

  • Myong H. K.;Kim J. E.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.153-158
    • /
    • 2005
  • Numerical simulations of two-dimensional steady incompressible lid-driven flow in a square cavity are presented to verify the validity of a new solution code(PowerCFD) with unstructured grids. The code uses the non-staggered(collocated) grid approach which is very popular for incompressible flow analysis because of its numerical efficiency on the curvilinear or unstructured grids. Solutions are obtained for configurations with a Reynolds number as high as 10,000 with both rectangular and hybrid types of unstructured grid mesh. Interesting features of the flow are presented in detail and comparisons are made with benchmark solutions found in the literature. It is found that the code is capable of producing accurately the nature of the lid-driven cavity flow at high Reynolds numbers.

  • PDF

Numerical study on thermal-hydraulics of external reactor vessel cooling in high-power reactor using MARS-KS1.5 code: CFD-aided estimation of natural circulation flow rate

  • Song, Min Seop;Park, Il Woong;Kim, Eung Soo;Lee, Yeon-Gun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.72-83
    • /
    • 2022
  • This paper presents a numerical investigation of two-phase natural circulation flows established when external reactor vessel cooling is applied to a severe accident of the APR1400 reactor for the in-vessel retention of the core melt. The coolability limit due to external reactor vessel cooling is associated with the natural circulation flow rate around the lower head of the reactor vessel. For an elaborate prediction of the natural circulation flow rate using a thermal-hydraulic system code, MARS-KS1.5, a three-dimensional computational fluid dynamics (CFD) simulation is conducted to estimate the flow rate and pressure distribution of a liquid-state coolant at the brink of significant void generation. The CFD calculation results are used to determine the loss coefficient at major flow junctions, where substantial pressure losses are expected, in the nodalization scheme of the MARS-KS code such that the single-phase flow rate is the same as that predicted via CFD simulations. Subsequently, the MARS-KS analysis is performed for the two-phase natural circulation regime, and the transient behavior of the main thermal-hydraulic variables is investigated.

Development of Free-surface Decomposition Method and Its ApplicationDevelopment of Free-surface Decomposition Method and Its Application

  • Park, Sunho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.75-82
    • /
    • 2017
  • With the development of computational fluid dynamics (CFD), studies on shipbuilding and maritime issues including free-surface wave flow have been conducted. Although the volume of fluid (VOF) and level-set methods are widely used to study the free-surface wave flow, disadvantages exist. In particular, it takes a long time to obtain solutions. In this study, a free-surface capturing code is developed for ship and offshore structures. The developed code focuses on accuracy and computation time. Open source CFD libraries, termed OpenFOAM, are used to develop the code. The results obtained using the developed code are compared with those obtained using interFoam. The results show that the developed code could be used to capture the free-surface wave flow without numerical diffusion; moreover, the accuracy of the developed code is largely the same as that of interFoam.

Inlet Shape Design of Air Handling Unit Using Commercial CFD Code (상용 CFD코드를 이용한 공조기 입구형상의 설계)

  • Choi, Young-Seok;Ju, Jong-Il;Joo, Won-Gu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.448-453
    • /
    • 2001
  • A commercial CFD code is used to compute the 3-D viscous flow field within the inlet flow concentrator of the newly developed AHU(Air Handling Unit). To improve the performance of the AHU, the inlet air needs to be gradually accelerated to the fan's annular velocity without causing turbulence or flow separation. Three major geometric parameters were selected to specify the inlet shape of the AHU. Several numerical calculations are carried out to determine the influence of the geometric parameters on the performance of the AHU. The performance of the AHU could be measured by the inlet and outlet flow uniformity and the total pressure loss through the inlet flow concentrator. The optimized nondimensionalized velocity profile through the inlet flow concentrator were used for the design of the AHU with the various volume flow rates.

  • PDF